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We fabricate, measure and compare the effects of the bonding states of dopant nitrogen atoms in graphene
devices, specifically on the liquid-flow-induced electricity by these devices. We find that nitrogen doping en-
hances the voltage induced by liquid flow regardless of the nitrogen bonding state. However, different nitrogen
bonding states affect graphene’s conductivity differently: while graphitic nitrogen is suitable for electricity-

generation applications, pyridinic nitrogen is hopeless for this purpose, due to the formation of symmetry-

breaking defects of the latter.

Introduction

Energy harvesting has been widely recognized as an important
topic in recent years. Among the novel energy-harvesting methods
reported [1-3], liquid-flow-induced electricity generation stands out
as a mechanically non-degradable strategy that targets a variety of
natural bodies of water—e.g., currents in ocean, river, waterfalls,
rain, etc.—as a viable energy source. In this article, we focus on
graphene as the energy-harvesting medium. Specifically, we in-
vestigate the effects of nitrogen doping on the electricity-generating
capabilities of graphene. We discuss the contributions of the bonding
states of nitrogen atoms in graphene as a follow-up report on pre-
vious research [4,5].

Methods

Graphene was synthesized by established chemical-vapor-deposi-
tion method [6,7], and then transferred onto silicon substrates. The
devices were completed by fabricating electrodes onto these graphene/
Si substrates at a separation distance of 10 mm. The doping of nitrogen
in graphene was carried out using a custom neutral-beam (NB) system
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[8]. We studied two types of nitrogen-dopant atoms with specific
bonding states in graphene: graphitic and pyridinic nitrogen. While
graphitic nitrogen atoms are located in the plane of graphene sub-
stituting the carbon atoms, pyridinic nitrogen atoms are located either
above point defects, or at the graphene edge as shown Fig. 1(a). Based
on our previous investigation, bonding-state selective synthesis of ni-
trogen doped graphene is possible by energy-controlled nitrogen NB,
which produces graphitic and pyridinic nitrogen dopants at NB energies
of Exg = 7 €V and Eyp = 13 eV, respectively [8,9]. The NB fluxes under
both these energy conditions are comparable, and the treatment time
for doping is 1 min. This method yields doping concentration of about
0.5% for both nitrogen dopant types. Comparison between graphitic
and pyridinic nitrogen for electricity generation was done by releasing
a deionized (DI) water droplet from a height of 10 cm (Fig. 1(b)). The
generated voltage was then recorded by an oscilloscope (Tektronix,
TDS2004C) every 0.04 s.

Results and conclusions

Both pyridinic and graphitic nitrogen dopants enhance liquid-flow-
induced voltage in graphene. The spike-like signals in Fig. 2(a) indicate
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Fig. 1. (a) Chemical structure of graphitic and pyridinic nitrogen in graphene.
(b) Schematic illustration of the experiment. Volume of DI water droplet, dis-
tance between electrodes, tilted substrate angle and the release height are
0.1 ml, 10 mm, 45 degrees, 10 cm, respectively.

the voltage induced at the interface between DI water and nitrogen-
doped graphene. These spike-like signals appear just after each water
droplet makes contact with graphene. On pristine graphene, a single
water droplet induces a voltage V = ~80mV. In contrast, the voltage
induced at both types of nitrogen-doped graphene is approximately

(a) (b)
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three times greater in magnitude (V = 230-240 mV). The enhancement
effect of nitrogen doping on voltage generation is explained by the
surface charging of graphene at the nitrogen-dopant atoms. Initially, we
expected the different bonding states of the graphitic and the pyridinic
nitrogen atoms to affect the liquid-flow-induced voltage in graphene
differently; however, our results in Fig. 2(a) show no such effect.
Therefore, we propose that the observed voltage-induction enhance-
ment is caused by the nitrogen atoms acting as electron donors, thus
modifying the surface charge of graphene.

Both pyridinic and graphitic nitrogen doping cause resistance in-
crease in graphene; however, pyridinic nitrogen causes a much larger
resistance increase compared with graphitic nitrogen (Fig. 2(b)). We
propose that the magnitude difference in resistance change is caused by
the respective geometric constraints of the two nitrogen bonding states.
Pyridinic nitrogen atoms are located at graphene’s edge, forming point
defects that disrupt graphene’s wt-system upon doping, causing the large
resistance increase—i.e., conductivity decrease—in graphene
(Fig. 2(c)). On the other hand, graphitic nitrogen atoms, located in
graphene’s plane, only cause a slight increase in graphene resistance via
carrier scattering. The output power of the graphene samples were es-
timated and shown in Fig. 2(c). Graphitic nitrogen doped graphene
shows 1.3 puW, which it is ~1.5 times higher compared with pristine
graphene (0.89 pW). On the other hand, the output power from pyr-
idinic nitrogen-doped graphene is negligible (0.01 uW). Here, gra-
phene’s conductivity is significantly reduced by the geometric con-
straints of the pyridinic nitrogen.

In conclusion, comparison between graphitic and pyridinic nitrogen
for flow-induced electricity generation was carried out as follow-up
study of our pervious results. Both graphitic and pyridinic nitrogen
enhance comparable liquid-flow-induced voltage in graphene, and the
generated voltage seems to be tolerant of the defects in graphene.
However, pyridinic-nitrogen-doped graphene is not suitable for power
generation devices: the geometric constraints of the pyridinic nitrogen
degrade graphene’s electric conductivity too much for this purpose.
When the doped graphene is used as current path, the conductivity
should be secured to obtain electrical current and power.
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Fig. 2. (a) Typical signal of generated voltage. (b) Resistance between electrodes. (c) Estimated output power from each graphene sample.
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