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Materials informatics is an emerging discipline that opens a new paradigm of science: data-driven materials
discovery. The visualization of high dimensional material properties data is challenging due to a lack of appro-
priate tools. This article describes a workflow for using Self-Organizing Maps (SOM) as a time- and cost-efficient
method of visualizing and validating property relationships between materials. SOM is a machine learning
technique that uses dimensionality reduction based on similarities between properties to visualize the relation-
ships between materials in a high-dimensional dataset. While the conventionally used visualization method,
Ashby plot, displays a pair of material’s properties, SOM is a technique that can display multiple properties that
are effective for high-dimensional materials correlation studies. In this paper, SOM was used to validate property
correlations among 21 material properties in a dataset of over 398 commercial materials. We employed U-matrix
map, clustering map and heatmaps to visualize the SOM we trained. The clustering and heat maps produced from
SOM were used to identify unique materials and infer correlations between material properties and fundamental
material structure. We have also shown that SOM method can provide multiple layers of interpretation through
visualizing not only numerical properties but also categorical information of materials. Lastly, we have used SOM
to provide new insight into the quantity of Griineisen parameter across metals and ceramics. Through these ex-
amples, it is demonstrated that SOM can be used for different types of materials analyses for various applications.
This paper advocates SOM as an integrated approach to study material property relationships that can be used for
both materials education and discovery.

1. Introduction analyzing such complex high-dimensional data. Conventional methods of

materials property comparison include Ashby map, which is a plot that

In 2011, the Materials Genome Initiative (MGI) was initiated by the
White House to find more time- and cost-effective methods for materials
discovery, development, and manufacturing [1]. New sources of data
from high-throughput experiments (both experimental and computa-
tional) are rapidly increasing in the fields of science and engineering,
posing a significant difficulty in interpreting the high-dimensional data
that is currently available [2]. For example, the National Institute of
Standards and Technology (NIST) generates large volumes of property
data that can offer insightful relationships between materials [3]. How-
ever, there are few tools available that are suited for visualizing and
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displays two material properties at the same time. These plots are useful
for determining ratios between different materials, but are not designed
for visualizing multi-dimensional data.

Our project outlines a holistic method of approaching materials
visualization through fundamental understanding of high-dimensional
material relationships. Today, the heart of Materials Science and Engi-
neering education is to integrate approaches of studying materials that
include structure, characterization, processing, and performance factors
of the materials. In 2008, the National Science Foundation (NSF) iden-
tified this task of integration in undergraduate materials science
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curriculum as a key limitation to materials education and discovery [4].
Materials informatics is concerned with seeking high-throughput, robust
methods to seek patterns among materials properties along different
length scales. Even though informatics is established in fields such as
biology and social sciences, materials informatics is growing in interest.

Our goals are to learn and reinforce existing knowledge about
property-property relationships using a data science approach and an
existing experimental data set of materials. In this paper, we introduce a
Self-Organized Mapping (SOM) method to produce so-called clustering
and heat maps that allow visual qualification of relationships between
material properties. SOM uses experimental data to develop a powerful
visualization tool that uses unsupervised machine learning to advance
the knowledge of property-property relationships for materials infor-
matics [5]. Due to its visual output, SOM is an effective and intuitive
educational tool for teaching fundamentals of materials property re-
lationships to a wide audience. We describe a comprehensive workflow
that encompasses data management, machine learning, and finally,
visualization to directly infer the relationship between materials. By
using data visualization tools to analyze existing information, our goals
are to validate the existing knowledge about property-property re-
lationships of materials with a data science approach, to discover an
efficient and practical way to understand the underlying relationships
between materials that can potentially suggest new research directions.
We have demonstrated that SOM can be used for different types of ma-
terials analyses such as using generated heat maps to evaluate positive
and inverse correlations between properties. SOM also produces cluster
maps which reveal several unique materials in our training dataset as a
result of different processing methods and composite species. Lastly, we
have used SOM to evaluate new quantities, such as Griineisen parameter,
that are not in our training data.
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2. SELF-ORGANIZED mapping (SOM) visualization approach
2.1. SOM theory/Algorithm

In statistics, the dimension of data is defined as the number of vari-
ables that a data point has. In our study, the data is composed of many
materials, and each data point represents a material with its mechanical,
thermal, electrical and other properties. Thus, the number of dimensions
our data contains corresponds to the number of properties of a material.
Here, we introduce self-organizing map (SOM) as a powerful tool to
visualize our multi-dimensional data of materials.

There are two types of machine learning: supervised and unsuper-
vised. In supervised learning the main goal is to accurately predict the
value of an outcome (regression) or categorize an outcome (classifica-
tion) based on a number of input data. In unsupervised learning, the goal
is to describe associations and patterns among a set of input data [6]. We
used a self-organizing map (SOM) to do unsupervised machine learning
to produce a low-dimensional, nonlinear approximation of a
high-dimensional data, making it an appealing instrument for visualizing
and exploring high-dimensional data [7]. In other words, SOM is
employed to extrapolate the high-dimensional data set while retaining its
topology [8]. The high-dimensional data that we want to approximate, or
in other words, extrapolate, is called training data. Fig. 1 illustrates how a
SOM is trained based on the training data, in which red dots 1 to 12 are
the training data points in the multi-dimensional space, axes from a to f
represent the variables of training data. In our case, the red dots 1-12
represent 12 materials, and the variables a to f are the properties of
materials. Fig. 1(a) shows the initial status of the SOM. In this case, the
SOM is a rectangular grid with the nodes (shown as black dots). Fig. 1(b)
and (c) illustrate how the location of the grid and its nodes are updated.
In Fig. 1(b), the nodes near the training data point 1 are ‘dragged’ to
make them closer to it. In Fig. 1(c), the ‘dragging’ is operated on the
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nodes near the training data point 2. After many iterations of this
‘dragging’ operation, all the nodes get close enough to the training data
and some nodes overlap with the training data points, as shown in
Fig. 1(d). Although the grid is severely distorted in the multi-dimensional
space during the training process, it retains its two-dimensional topology,
which enables the visualization of the high-dimensional training data on
a two-dimensional map. Fig. 1(e) shows the two-dimensional topology
extracted from the grid in Fig. 1(d). The step from figure 1(d) to figure
1(e) is like flattening a crumpled paper, which finalizes the dimension-
ality reduction.

Among the many versions of SOM, we implemented a version of SOM
called “Batch Learning-SOM(BL-SOM)” [9]. The algorithm of training the
BL-SOM is briefly summarized as the following steps:

1) Define a topographic map in the multi-dimensional space spread by
the training data (in our case, the map is a square grid with a given
size), as shown in Fig. 1(a). For each node in the grid, its coordinate in
the multi-dimensional space is called the weight of the node. The
weights of all the nodes are initialized by a method called Principal
Component Analysis at the beginning of training process [10].

2) A data point is chosen from the training data. For example in Fig. 2,
the training data point 7 is chosen.

3) Calculate each node’s Euclidean distance to the chosen point in step
2). Find the closest node to the chosen point in terms of the Euclidean
distance in the multi-dimensional space. The node found in this step is
called ‘Best Matching Unit’ (BMU) to the chosen training data point.
For the example in Fig. 2, the best matching unit of training data point
7 is denoted as BMU7.

4) Find the neighbors of the BMU. The neighbors are the nodes within a
given neighborhood radius. Note that the neighborhood radius refers
to the distance on the 2D topology of the grid. As shown in Fig. 2(b),
we assume the side length of each little block in the grid is of 1 unit,
thus, the neighborhood radius here is 2. The radius of neighborhood
is a value that starts large, then diminishes in each iteration.

5) Repeat step 2 to 4 to identify the BMU and neighbors of BMU for all
the points in the training data.

(a)
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6) Update the weights of all the BMUs as well as the weights of BMU’s
neighbors in a way that makes them closer to their corresponding
training data point. One iteration is completed after this step.

7) Iterate until all the nodes in the map get close enough to the training
data.

2.2. Current applications of SOM

In the engineering field, the applications of SOM widely range from
process and system analysis, statistical pattern recognition, robotics, and
telecommunications [11-14]. The most straightforward application of
the SOM is in the identification and monitoring of complex machines and
process states [15].

In materials science and engineering research, SOM is mainly applied
to dimensionality reduction and visualization of high-dimensional ma-
terials data sets. In terms of dimensionality reduction, Principal
Component Analysis (PCA) is actually the most popular tool and has been
broadly used in materials informatics. Compared to PCA, SOM has
advantage in maintaining the topological information of the training data
and it is not inherently linear. Using PCA on multi-dimensional data can
cause a loss of information when the dimension is reduced to two. If the
target data has a lot of dimensions and each dimension is equally
important, SOM can be quite effective over PCA. SOM is only one method
of dimensionality reduction and visualization, with benefits over the
standard PCA method depending on the research question and dataset
[16]. Compared to an Ashby Map, which is a conventional way of visu-
alizing materials property by separately displaying two properties on x
and y axes in a coordinate system, SOM is another method of showing the
relationships between materials and trade-off relationships in properties,
especially when evaluating many properties at the same time [17]. For
our materials training data with 21 properties, it will take 210 Ashby
maps to display the relationship between every two properties. However,
with the SOM method, only 1 SOM and 21 heatmaps (1 for each prop-
erty) are necessary to intuitively display the relationships among prop-
erties, which will be discussed in later sections.

SOM is conventionally combined with other machine learning
methods such as K-clustering and neural networks, which enable the
interpretation of high-dimensional data in addition to visualization [18,
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19]. Kikugawa et al. used SOM and K-clustering method to classify
consistent grouping of liquid substances in terms of their thermophysical
properties [20]. Okabe’s group at Tohoku University combined SOM
with molecular dynamic simulation results to visualize the properties of
complex structured polymers and discover the correlation between me-
chanical properties and multifunctional groups of base resins [21]. Rong
Liu et al. implemented SOM-based clustering analysis and heat map
visualization on high-throughput screening datasets for toxicity studies
of engineered nanomaterials [22]. Schneider et al. employed SOM to
perform feature extraction and dimensionality reduction on
high-dimensional molecular descriptor vectors, and the SOM result is
utilized as the input of neural network [23]. SOM is also applied to the
prediction of a material’s property. For example, Jha et al. used SOM to
predict the composition of AlNiCo-type alloys that perform well for
magnetic properties [24].

Overall, the application of SOM in materials science and engineering
is so far limited, simply because of the lack of awareness of SOM’s power
in processing high-dimensional data. Additionally, the application of
SOM is mostly focusing on standardized computational data, the research
on commercial experimental data is also limited, due to the lack of
consistency on experimental data measured by different researchers.
However, in our paper, we demonstrated that the SOM method can be
successfully applied to commercial experimental data from Granta,
which will be shown in the next section.

In later sections, we will further discuss SOM’s application in visu-
alizing and analyzing relationships between material properties, which
shows great potential in facilitating data-driven research in materials
science field as well as materials selection in industry.

3. Methods
3.1. Data mining and extraction from Granta database

“CES” Selector is a commercially available database offered from
Granta that contains MaterialUniverse, a searchable electronic database
that contains manufacturer data of over 4000 different materials [25].
This experimental dataset covers 14 broad categories: physical, appli-
cation composition, mechanical, impact, processing, bio-data, absorp-
tion, geo-economic, thermal, electrical, optical, durability, and
environmental measurements. This broad and comprehensive collection
of commercial data makes the CES Selector a powerful tool for analyzing
a wide range of materials. CES Selector was chosen for its wide and
comprehensive evaluation of experimentally collected measurements
spanning across various material classes. The CES Selector selectively
contains information from commercial materials provided by manufac-
turers and suppliers. Due to this focus on commercialized materials, re-
sults from SOM analysis on the CES Selector dataset will reveal
information about potential materials of interest that are already
commercially applicable. This makes CES Selector very valuable as a tool
for establishing relationships between materials that are important in
commercial and industrial uses.

The CES Selector provides a data extraction tool that allows the user
to select individual materials for property value comparisons. This tool
allows for the selection of many different materials into a .csv format that
can be saved onto a computer for quick processing.

3.2. Data processing and cleaning

Among various types of property data available in CES Selector, we
focused on only mechanical, thermal, electrical, and optical properties in
this paper. Other properties were not used in our analysis, as they are
mostly categorical and do not have numerical values that can be
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Materials for the training dataset were selected randomly within the
two classes of our interest (ceramics and metals). By using the data
extraction tool in Granta, a total of 421 materials with their various
properties were produced. The training data consists of 196 ceramic
materials and 225 metallic materials. Special attention was given to
avoid bias in data caused by reporting materials with very similar alloy
compositions, which is a primary concern for metals. To avoid this bias,
metals were chosen with different base materials, different dopants, and
different processing methods to diversify the training dataset.

The raw data extracted from Granta, however, contains some missing
values. Materials containing too many missing values and/or properties
were carefully removed without causing bias. This process eliminated all
the “holes” in the training data set, which means data padding is not
necessary. In this way, the cleaned training dataset now contains 398
materials and 59 properties. Some of the properties are numerical data,
e.g. Young’s modulus, and some of the properties are categorical data,
e.g. magnetic or non-magnetic. Only the numerical properties can be
used to train the SOM. Some properties were also removed (such as
toughness and thermal shock resistance) because they were derived from
calculations on data already contained in Granta. Thus, 398 materials
and 21 numerical properties were input into SOM as training data.
Though the categorical properties were not used to train the SOM, it still
can be visualized in our clustering maps and play an important role in the
analysis of the clustering result. Cluster maps are produced using an al-
gorithm described in Section 3.3 and depict materials with similar
property values grouped together.

Granta reports all 21 of the numerical property data of interest as a
range of values. Our SOM algorithm requires that only single values are
used, rather than a range of values. For these cases, we tried 2 methods to
process the data. In the first method, we took the arithmetic average of
the range, which was calculated by dividing the sum of the minimum and
maximum value in the range by 2. This arithmetic average replaced the
range reported as the value to be used for our SOM analysis. A concern to
this method is that the average is not representative of the material,
especially for properties with wide ranges. In an effort to normalize the
range-recorded values to be more representative of the dataset, the
square root of the product of the minimum value and the maximum value
in the range was used as the second method. All of the training data were
processed similarly for both cases. It was found that SOM analysis on
both methods (arithmetic average vs. square root average) yielded no
significant differences between the so-called “cluster maps” that were
generated from our training data (see Fig. 3). Thus, we chose to use the
arithmetic average method to preprocess the training data in our later
work for simplicity. Although cluster maps will be analyzed further in
section 4 of this paper, it is important to recognize at this stage that the
geometry of the clusters (shown as the boundaries in Fig. 3) are consis-
tent and the position of the materials are only slightly changed. There-
fore, we conclude that the clustering results are not sensitive to what
averaging method we choose to use.

These cluster maps that are produced by our SOM method is not only
a powerful visualization tool, but also has an advantage in that it can be
used to represent both numerical as well as categorical data (as shown by
our use of color-coordinated dots to represent different material classes in
section 4 of this paper).

3.3. Training SOM and visualizations

All the algorithms included in this paper were realized in Python 3.6
environment. The training and visualization of SOM was implemented by
a python package called Tfprop_sompy. It was developed by Kikugawa
and Nishimura, based on an open-source SOM package called SOMPY
[26]. The data cleaning, preprocessing and visualization work also
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Fig. 3. Cluster maps produced by SOM algorithm on training dataset containing 398 materials and 21 properties. Training data presented in range values were
calculated by taking the average of the minimum and maximum values in the range (left) and by taking the square root of the product of the minimum and maximum
values in the range (right). Each dot and corresponding number index refer to an individual material that is used in our training data.

In our work, we standardized each of the training data by xy = X”Tﬂ‘i ,in
7

which x;; represents the j-th property of the i-th material in our training
dataset, K, oj Tepresent the mean and standard deviation of j-th property
of all the materials. An appropriate map size is expected to output a SOM
where each node in it matches with no more than one training data point.
The map size is adjusted based on this rule. For all our later work, we
used a map size of 60 x 60.

The training process of SOM has two stages: firstly roughtune then
finetune. In the roughtune stage, the neighborhood radius gradually
decreases from 8 to 2, and this stage lasts for 273 times of iteration. In
finetune stage, the neighborhood radius gradually decreases from 2 to 1,
and this stage lasts for 361 times of iteration.

When running on a local computer with a 2.3 GHz two-core proces-
sor, the training process of our SOM with a map size of 60 x 60 on our
dataset with 398 materials and 21 properties takes 221.513 s. For a
different project in our lab, when running our algorithm on a local
computer with a dataset of 739 materials with 5 features, the training
process takes 57.675 s. This computer has one processor with a 2.00 GHz
processing speed.

In our work, we employed U-matrix map, clustering map and heat-
maps to visualize the SOM we trained [27]. The U-matrix map was
produced by mapping the average Euclidean distance between each node
and its nearest neighbors in high-dimensional space onto the
two-dimensional map, as shown in Fig. 4. For example, the value of node
5 on the U-matrix map is given by the average of the Euclidean distance
between node 5 and its nearest neighbors: node a, b, ¢, d. The values on
the U-matrix map reflects the ‘similarity” of each nodes and their
neighbors. The high U-matrix value area on the U-matrix map, which are
shown by red color region in Fig. 7(a), means the nodes as well as the
training data points in this area are far away from each other in the
high-dimensional space, and in other words, they are very ‘different’. For
training data points in the blue region, they are very ‘similar’ to each
other.
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Fig. 4. The average distance in high dimensional space determines the value of
U-matrix.

initial K centroids for the K clusters, as shown in Fig. 5(a). Then iterate
the following two steps until the clusters assignments stop changing: 1)
assign each node to the cluster whose centroid is closest (shown in
Fig. 5(b)), 2) calculate the new centroids by taking the mean value of all
of the samples assigned to each previous clusters (shown in Fig. 5(c)).
Finally, the clustering result can be visualized with the SOM, as shown in
Fig. 5(d). The number of clusters are empirically determined and then
validated by the U-matrix map we got. A reasonable clustering map is
expected to have cluster boundaries overlapping with red regions on the
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(a) (b)

weights are de-standardized before producing the heatmaps). For
example, as illustrated in Fig. 6 below, by mapping the ‘a’ axis element of
node’s weights, we are able to obtain distribution of the a’s value on the
two-dimensional grid, and in the same way we can get the distribution of
b to f’s value. The color bar of the heatmap was set in a way that the red
color represents the highest value on the map and the blue color repre-
sents the lowest value. The advantage of the method is that the variation
of value on the map is most significant, which can help the users detect
the correlation between properties.

It seems that the total number of heatmaps we can get equals to the
number of elements that the node’s weight contains (i.e. the number of
the variables that the training data has). However, since a heatmap is
essentially a matrix, we can produce a new heatmap by doing the
element-wise operation on two or even more heatmaps we already have.
For example, if we want to know the distribution of (aeb), we can do
element-wise multiplication on the heatmaps a and b in Fig. 6. This
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(c) (d)

Fig. 5. Perform K-means clustering method on the trained SOM.

method is useful in computing new data not originally provided in our
training dataset.

4. Interpretation of SOM

4.1. Clustering map

As mentioned in section 3.2, we studied material properties such as
mechanical properties like Young’s modulus, Poisson ratio, and fracture
toughness, thermal properties like thermal conductivity, and electrical
properties like electrical conductivity for 398 different commercial metal
and ceramic materials. The U-matrix map and clustering map are shown
in Fig. 7a and b. The cluster map (Fig. 7(b)) indicates the different
clusters of similar materials after running the SOM algorithm on our
dataset. The boundaries in the cluster map that is produced closely re-
sembles the red region in the U-Matrix (Fig. 7(a)), validating the

| Element-wise
Multiplication

=

Fig. 6. Produce heatmap by mapping each element of the node’s weights onto the two-dimensional map.
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Fig. 7. a. U-Matrix produced from SOM algorithm indicating boundaries between material clusters. b. Cluster map produced from SOM algorithm containing 398

materials represented by individual dots, using averaged values.

clustering result. The cluster map contains five distinct clusters repre-
sented by different colors, and the dots on the cluster map mostly rep-
resents an individual material (a few dots represent two materials). In
addition, the materials we studied belong to different material categories
such as ceramic and metal. The numbers labeled on the cluster maps are
ID numbers that each correlate to a unique material in our training
dataset.

During our data extraction from Granta, there were many categorical
data that we could not apply to our SOM algorithm because they are not
numerical values (therefore, we removed these properties in our training
dataset from 59 to 21 properties as explained in section 3). Therefore, to
add an extra layer of interpretability to our SOM analysis, we labeled
each dot by a different color with categorical information from Granta
such as magnetic/non-magnetic, resistance of a material to degradation
by strong acid, material class and so on (shown in Fig. 8).

This utility of SOM is powerful because it allows us to not only
visualize numerical data on the maps, but also non-numerical data. This
capability adds another layer of analysis to our SOM interpretability and
help us identify how materials in the same category are similar or dis-
similar. There are several categorical data from Granta that we had
excluded from our data processing step because they are non-numerical.
However, by using this method of introducing non-numerical data to our
cluster maps, we can expand upon the wide range of property informa-
tion provided by Granta and make deeper interpretations to our maps.

There are several interesting observations in analyzing the cluster
maps produced by labeling categorical data in Fig. 8. It appears that the
magnetic ability (Fig. 8(a)) and resistance of materials to strong acids
(Fig. 8(b)) show no clear correlation between materials because the
colored dots do not display a noticeable trend in their clustering location.
However, the cluster map representing materials by their material class
(Fig. 8(c)) does provide some interesting material relationships. It is
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found in the bottom-left corner and technical ceramics are found in the
upper-right corners. Ceramics are very clearly separate from metals and
non-metals, which supports our understanding of the differences be-
tween the fundamental bond structure of these materials. Therefore, this
method of representing categorical data using our SOM method can
reveal material relationships that are not represented numerically.

Fig. 9 is an extension of Fig. 8, in which we layer two types of cate-
gorical data in our SOM maps. As in Fig. 8, the dots are color-coded to
represent their material class however additional labels next to each data
point were added to indicate their base material. It is shown that mate-
rials with similar base material tend to be located within the same region
of the cluster map. This is clearly seen in oxides being represented in the
upper-right corner and carbon-based materials being represented in the
upper-left corner. Similar base materials located in the same region in our
cluster maps validate that results produced by our SOM code are
consistent with our expectations that the base material provides a
foundation for the overall properties of the material. Upon further visual
analysis of the location of similar materials in the cluster maps, several
interesting materials stand out that are located farther away from other
similar materials. This SOM method allows us to quickly visualize cor-
relations between material structure-properties in an intuitive way that is
very supportive of students’ educational training in identifying similar or
dissimilar materials.

Therefore, we have identified and labeled several interesting mate-
rials that are outliers compared to other similar materials in their class in
Fig. 9. Several materials of interest are circled. The two beryllium ma-
terials circled in red are unique because they are found in the cluster that
is occupied by ceramic oxides and carbides, while other non-ferrous
metals (indicated by the light green points) are found in different re-
gions. The identity of these two beryllium metals are Beryllium, grade
0-50 that is hot isostatically pressed and Beryllium, grade I-220B that is
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Fig. 8. Cluster map produced from SOM algorithm contain-
ing 398 materials. The materials are individually represented
by points that are color-coordinated to indicate the magnetic
ability (a), the tolerance to strong acid (b), and material class
(c). The cluster map representing magnetic ability portrays
each material as either non-magnetic (white) or magnetic
(dark blue). The cluster map representing resistance to
degradation by strong acids portrays each material as intol-
erant (white), limited tolerance (orange), excellent tolerance
(green), or acceptable tolerance (dark blue). The cluster map
representing different material classes portrays each material
as a precious metal (red), non-ferrous metal (green), ferrous
metal (teal), other metal (orange), technical ceramic (light
blue), and non-technical ceramic (dark blue). (For interpre-
tation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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Fig. 9. This cluster map is an extension of Fig. 8, where we not only color-labeled the dots with material class type, but the base material is indicated as well. Several
‘outlier’ materials are identified and circled in different colors. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)

methods can result in materials that have vastly different properties than
other materials in the same class. In the case of the two beryllium ma-
terials, they have properties more similar to ceramics than other metals
as a result of being hot-pressed.

The green circled material in the upper right corner of Fig. 9 is a
ceramic with a carbon base. This material is in a separate cluster away
from other carbon-based materials and is different from the surrounding
materials. This can be verified by the U-matrix map in Fig. 7(a), where
the material is surrounded by red boundary. The identity of this material
is diamond. It is important to note that although this point is located in a
separate cluster from the other surrounding points, it actually belongs to
the same light blue cluster as the other carbide-based materials in the
lower right in Fig. 9.

4.2. Heat maps

As described in section 3.3, heatmaps are produced using SOM by
separately mapping each element of the node’s weights onto the two-
dimensional map. Shown in Fig. 10 are 21 heat maps generated from
the 21 properties from our training data, from which valuable materials
information can be gleaned from interpreting relationships between
different material properties. For example, properties with similar heat
maps (Young’s modulus, Bulk modulus, Shear modulus, Compressive
strength, Hardness, and Flexural modulus) are highly correlated. Since
these properties are already known to be highly correlated, we can see
that SOM is a powerful and effective tool in validating the expected
correlation between different material properties and to predict un-
known correlations. The advantages of using SOM to generate these heat
maps is for quick, visual, and qualitative understanding of relationships
between material properties. Material properties with high correlation
will have similar heat maps, with similar red and blue regions.

A correlation matrix was used to quantify dependencies between two
material properties. For this, a Pearson correlation matrix was calculated
for all 21 properties that were analyzed in the training data [34]. The

https://reader.elsevier.com/reader/sd/pii/S2590048X19300202?...C4A5AD88EE7BBOD4BE790B9DCE3CAC2EEC2509B4F96D7D344D76043CBADO
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where ry, is the Pearson correlation coefficient between property X and
property Y, x; and y; are the value of property X and property Y of the i-th
material (i = 1,2,...,n), nis the total number of materials in the training
dataset, X and y are the mean value of property X and property Y of all the
materials. A correlation value between two properties that has an abso-
lute value of greater than 0.7 is considered as ‘high’ and therefore is
highly related to each other. The purpose of this analysis is to establish
that two properties are correlated to each other, not that they are
necessarily causal. The sign of the actual value (+or -) provides infor-
mation about whether two properties are positively or inversely related
to each other. For example, the correlation value between flexural
modulus and Young’s modulus is 0.99, meaning that there is a direct
positive relationship between these properties. This is logical because the
flexural modulus of a material measures the resistance of a material to
resist bending, and materials with higher Young’s modulus are by defi-
nition more resistant to deformation under load. Alternatively, a negative
correlation value, such as that between thermal expansion coefficient and
melting temperature (—0.70) represents properties that are strongly
inversely related. This relationship is described by understanding
fundamental knowledge about bonding strength. The stronger the bond
strength in a material, the lower the thermal expansion coefficient and
the higher the melting point. Both cases of positive and inverse rela-
tionship between properties are shown in Fig. 11. The heat maps allow
for quick identification of correlation relationships based on visual
analysis of the locations of the red and blue regions between heat maps.
The correlation matrix and heat maps generated across the 21 properties
support expected material trends, and is a valuable tool in materials
education as a visual representation of these trends.

While the correlation matrix and the heat maps obtain the same
conclusion, the heat maps are able to provide further information about
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Fig. 10. Heat maps produced from SOM code that are used to visualize similarities among various properties of the 398 materials evaluated. There are 21 heat maps to
represent the 21 different material properties that were in the training dataset. The red regions indicate high values and blue regions indicate low values. The heat
maps are arranged such that correlated properties are grouped together in columns. (For interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)

correlation function alone.

However, the heatmaps for flexural modulus and Young’s modulus
(right) show a positive relationship between these two material proper-
ties. The regions with high flexural modulus (red) also correspond to high
values in the Young’s modulus heat map.

The heat maps are in accordance with known material equations as
demonstrated in Fig. 12, which reinforce existing knowledge about me-
chanical properties. We compared the relationship between the bulk
modulus, Young’s modulus, and Poisson ratio. These three properties are
related through Equation (3):

E

K=31=2)

3

https://reader.elsevier.com/reader/sd/pii/S2590048X19300202...C45AD88EE7BBOD4BE790BODCE3CAC2EEC2509B4F96D7D344D76043CBADO

consistent among materials, so it has little impact on the positive rela-
tionship between the bulk and Young’s modulus. In this way, SOM val-
idates visual results and correlations with mathematical relationships
between material properties. This type of mathematical analysis sup-
plements SOM as an educational tool by verifying correlational proper-
ties between materials with a visual output. However, SOM is not
restricted on only correlated properties; it can be used on very uncorre-
lated properties as well. Other applications for the heat maps will be
shown in the next sections in this paper, showing the usefulness of our
SOM method for different applications. In this way, SOM validates visual
results and correlations with mathematical relationships between mate-
rial properties and is a strong educational tool.

11/8/20, 1:46 PM
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Fig. 11. The heatmaps for thermal expansion coefficient and melting point (left) show inverse relationship between these two material properties. For these properties
the regions with high thermal expansion coefficient (red) correspond to low values (blue) in the melting point heat map. (For interpretation of the references to color

in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 12. Heat maps of Young’s modulus (left), bulk modulus (center), and Poisson ratio (right). These maps show that the bulk modulus and Young’s modulus are
positively correlated because the heat maps look similar. On the other hand, these maps also show that the Poisson’s ratio is relatively consistent among materials, so it
has little impact on the positive relationship between the bulk and Young’s modulus.

5. Applications of the SOM method
5.1. Unique materials in terms of thermal and electrical conductivities

Using a similar method to the previous example comparing red and
blue regions of the heat maps, we identified materials with unique ma-
terial property relationships (Fig. 13). We have labeled three groups of
unique ceramic and metal materials and show these materials with
different marker and color on the heat map. Most ceramics have low
thermal and electrical conductivity. However, in group 1 (magenta tri-
angles) these ceramics have high thermal conductivity and low electrical
conductivity. The identities of these materials are silicon carbide, silicon,
graphite, diamond, beryllia, and aluminum nitride. Some of these ma-
terials, such as silicon carbide and aluminum nitride are typically known
as ‘fine ceramics,” which are different from conventional ceramics
because they are engineered to have precise control of composition [30].

In group 2, green triangles indicate that these materials are the only
two ceramics in our training data that have high thermal and electrical
conductivity. Thermal and electrical conductivity are related by the
Wiedemann-Franz law. This law which states that the relationship be-
tween thermal and conductivity is related to temperature and is based on

https://reader.elsevier.com/reader/sd/pii/S2590048X19300202...C45AD88EE7BBOD4BE790BODCE3CAC2EEC2509B4F96D7D344D76043CBADO

and electrical conductivity. It should be noted that our training data
contains measurements of graphite (pyrolytic) collected from two
different orientations: parallel to plane (ID 136) and perpendicular to
plane (ID 135). We treated the different orientations as two data points. It
is known that when graphite is measured perpendicular to the plane, it
has much lower thermal and electrical conductivity compared to when it
is measured parallel to the plane [32]. There are two more materials of
interest (ID 218 and ID 219) in group 2. These materials are both
Beryllium alloys, and we have discussed the uniqueness of these two
metals in Section 4.1.

Most metals in our training data have a positive correlation between
thermal and electrical conductivity. For group 3 (cyan triangles), these
metals are unique because they have high electrical conductivity and low
thermal conductivity. The identities of these two aluminum-based ma-
terials are: Al-47%SiC(f) and Al-50%B(f). These two metals are
compositionally unique because they only contain about 50% aluminum.
The high level of dopants in the aluminum metals give these materials
unique properties compared to other aluminum metals in the training
data. Al-47%SiC(f) (commercial name: Al 6061-SCS-2) is used mainly for
aerospace and bridge components, while Al-50%B(f) (commercial name:
Al 6061-B) is used mainly for aerospace components.

11/8/20, 1:46 PM

Page 11 of 15



Introducing self-organized maps (SOM) as a visualization tool for materials

J. Qian et al.

Electrical conductivity (%l/ACS)

o

s
57
SSAECRESs . 0 |
S L = PO

P8 o
o, M
.M#

-2 P ar
’gﬂ;" 2 2 A A

research and education | Elsevier Enhanced Reader

Results in Materials 4 (2019) 100020

Thermal conductivity ( W/(m-K) )

A Group 1: Low electrical conductivity and High thermal conductivity

A Group 2: High electrical conductivity and High thermal conductivity

Group 3: High electrical conductivity and Low thermal conductivity

Fig. 13. Heat maps of thermal and electrical conductivity generated by SOM algorithm on 398 materials and 21 material properties. The colored dots indicate

materials of interest that have unique material relationships.
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Fig. 14. Heat map of Griineisen parameter generated by element-wise multiplication (left), the clustering map of all training data (right).

5.1.1. Evaluation of the Griineisen Parameter

In addition to visualizing correlations between material properties,
our SOM method can be used to evaluate new data that is not part of the
original dataset. Since the SOM heat maps are essentially matrices, it is
shown that they can be combined using element-wise multiplication to
produce new heat maps representing different properties not part of the

https://reader.elsevier.com/reader/sd/pii/S2590048X19300202...C45AD88EE7BBOD4BE790BODCE3CAC2EEC2509B4F96D7D344D76043CBADO

original dataset. Here is an example of using this method of element-wise
multiplication to produce a heat map for the Griineisen parameter
(Fig. 14). The Griineisen parameter measures the magnitude of the
dimensional change in a system as a response to the thermal energy
variation induced by changing temperature. This parameter connects two
important physical properties of a solid: the specific heat capacity (Cp)

11/8/20, 1:46 PM
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and the volume thermal expansion coefficient (@). It is calculated using
the equation:

akK
= 4)
pC,

where y is the Griineisen parameter, @ is the volume thermal expansion
coefficient, K is the bulk modulus, p is the density, and C;, is the specific
heat capacity.

To visualize the map for the Griineisen parameter, the heat maps for
thermal expansion coefficient (@), Young’s modulus, density, and specific
heat are combined through element-wise multiplication to produce
Fig. 14. The Griineisen Parameter on our heat map varies from 0.8 to 2.2,
so the value range is relatively small, which agrees with current study of
Volume-Based Thermodynamics and Thermoelasticity (VBT) [33]. The
Gruneisen Parameters for each material in our dataset were calculated
and represented on the heatmaps, which were color coordinated to
represent the distribution of value range. It is shown that the materials in
upper left cluster and lower right cluster have relatively constant Grii-
neisen Parameter. Comparing the clustering map to the heat map for the
Griineisen parameter, it is shown that precious metals (dark red dots)
have high Griineisen parameters, while the orange dots characterizing
‘other metals’ have low Griineisen parameters.

6. Conclusion

In our work, a SOM has been trained on a high-dimensional dataset
containing 21 numerical properties of metals and ceramics to evaluate
materials’ property-property relationships. Although we only evaluated
398 materials, we have shown incredible relationships between material
properties, such as mechanical properties. We have also shown multiple
layers of interpretation in our SOM method through visualizing not only
numerical properties but also categorical information of materials. This
supports SOM as a powerful tool for materials research and education,
even with small datasets. Our analysis of the SOM method expanded over
several applications.

Cluster maps generated using SOM validated the similarities between
materials in the same material class as well as materials containing the
same base material. The cluster maps revealed several ‘outlier’ materials
that were categorized in different clusters compared to similar materials.
We have identified these ‘outlier’ materials to be: two Beryllium metals
and diamond. These materials are unique due to their processing method
and base material composition, supporting SOM as an effective tool for
identifying material similarities and dissimilarities. We demonstrated
that SOM can be applied to generate heat maps that can be paired with
Pearson correlation coefficients to visualize both positive and inverse
correlations between material properties. For example, we showed that
flexural modulus has a positive correlation to Young’s modulus while the
thermal expansion coefficient and melting temperatures were inversely
correlated due to bonding structure. The heat maps also supported the
mathematical relationship between bulk modulus, Young’s modulus, and
Poisson ratio. Furthermore, we compared heat maps produced by SOM to
quickly identify 3 groups of unique materials that disobey the positive
correlation between thermal conductivity and electrical conductivity.
The first group are the ceramics with high thermal conductivity but low
electrical conductivity, which contains silicon carbide, silicon, graphite,
diamond, beryllia, and aluminum nitride. The second group are the ce-
ramics with both high thermal and electrical conductivity. One of them is
graphite, and the others are Beryllium alloys which we already identified
in the analysis of cluster maps. The third group are the metals with low
thermal conductivity but high electrical conductivity, which are two
aluminum-based materials.

We also demonstrated that heat maps can be manipulated through

https://reader.elsevier.com/reader/sd/pii/S2590048X19300202...C45AD88EE7BBOD4BE790BODCE3CAC2EEC2509B4F96D7D344D76043CBADO
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values not included in our original dataset.

In addition to conventional Ashby maps, we illustrated that SOM is
another visualization technique for materials science education and
research while it emphasizes different aspects of the data. Ashby maps
allows for showing the ratio of the two properties of materials, while
SOM allows for the quick and intuitive visualization of many properties
of materials at the same time. Together, the clustering and heat maps
produced from SOM can be used to support educational experiences
through visual analysis of material properties, and validate existing
knowledge about material properties relationships. In conclusion, SOM is
an integrated approach to study material property relationships and
identify materials with uniqueness.
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