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H I G H L I G H T S

• Self-organizing map is performed on thermophysical properties of liquid substances.• Machine learning-assisted screening protocol of liquid substances is proposed.• Liquid substances are automatically categorized based on various properties.• Easy visualization technique of relative relationships among liquids is provided.
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A B S T R A C T

In order to develop an efficient framework for global screening in the material exploration, we performed a
clustering analysis of machine learning on the multi-dimensional thermophysical properties of the liquid sub-
stances. Data mining using a self-organizing map (SOM) based on the unsupervised learning was employed to
project high-dimensional thermophysical data onto a low-dimensional space. Here we adopted 98 liquid sub-
stances with eight thermo-physical properties for the SOM training in order to group the liquid substances. The
present SOM-clustering approach properly categorized liquid substances according to the chemical species
characterized by the functional groups.

1. Introduction

Technology to design and synthesize liquid substances having ap-
propriate thermophysical properties for specific applications is an im-
portant subject in a wide variety of scientific and technological fields.
At the industrial level, efficient development and exploration of heat-
transfer fluids or phase-change materials, which are used as a working
fluid of heat exchangers in refrigeration and air-conditioning equip-
ment or used for thermal storage, are highly required these days. In
these areas, prior knowledge-based survey and/or conventional em-
pirical laws for materials properties are utilized for the design guide-
line; however, when novel materials with superior properties are de-
veloped, a trial-and-error approach is needed since the required
specification is so multi-objective, or the empirical laws is not always
effective due to the outside of application limit. For example, if required
thermophysical properties of the liquids has been realized by mixing

multiple liquids, the number of mixing combinations and variation in
the composition of each liquid get enormous, which makes the mate-
rials exploration almost impossible. Therefore, an alternative approach
is highly needed for design and discovery of novel liquid substances in
more efficient manner.

One promising approach is a data-driven machine learning (ML)
technique, which is known as materials informatics (MI) [1] recently.
Materials informatics has drawn considerable attentions in various
material design partly because application of ML rapidly prevails to a
wide spectrum of the scientific and technological field with the aid of
advancement of computational performance for ML. So far, MI is in-
tensively applied for accelerating search of inorganic materials like
shape memory alloys [2–4] and piezoelectrics [5,6], and for predicting
properties of perovskite crystal and finding one having optimal prop-
erties [7,8]. Other example is ML-assisted materials design and property
prediction of solid materials such as elpasolite [9,10], metallic alloys
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[11–13], transition metal complex [14], layered double hydroxide [15],
high dielectric permittivity materials [16], and thermoelectric materials
[17]. As such, these studies have already shown effectiveness of ma-
terials informatics, i.e., a use of enormous data from experiments and
numerical simulations, in particular, first-principle calculations, gives
the accurate prediction of physical properties and development of im-
proved materials.

Besides the inorganic materials, organic materials and organic-in-
organic hybrid systems are getting targeted as an application of MI
[18–25]. Discovery and design of polymeric materials, metal organic
frameworks (MOFs), and organic/inorganic perovskite are good can-
didates for MI subject and actually require the ML-assisted screening or
development. For example, polymer dielectrics were studied by ML
with properties provided by DFT (density functional theory) calcula-
tions [18,19]. A Bayesian optimization technique was applied for pro-
posing better experimental settings of polymer fiber synthesis [20]. A
couple of unsupervised and supervised ML techniques were applied to
develop the better prediction of CO2 absorption properties into amine
solutions [21]. For construction of a better quantitative structure-
property relationship (QSPR), a large dataset of polymeric materials has
been provided online [22,23]. ML-assisted materials development and
property prediction for soft matters are also reviewed on Ref. [25].

Applications of MI protocols on the design and exploration of the
liquid substances, on the other hand, have been very limited so far. As
mentioned earlier, the efficient development and exploration of heat-
transfer fluids like a coolant is, however, getting required significantly.
When it comes to a coolant, the multi-objective design is needed since
the various requirement should be fulfilled as an industrial product,
some of which are basic transport properties like thermal conductivity
and viscosity, non-flammability, and global warming potential (GWP).
Therefore, it is not an easy task to find the improved substances and
optimize the various properties at once.

In our study, we aim at building the overall platform for the efficient
screening of materials candidates, which is constructed by a multi-stage
screening protocol. This platform involves “global screening” which
enables to roughly screen a lot of candidates by using data-mining
approach based on unsupervised learning, and precise exploration
which is realized by commonly adopted MI techniques based on the
structure/properties prediction model and/or structure optimization by
desired properties. The purpose of this study is to demonstrate that
unsupervised approach for grouping materials is effective as the global
screening. Our vision regarding the multi-stage screening is mostly
motivated from the fact that large amount of dataset is not always
available for liquid substances. Therefore, in order to build an accurate
prediction model with relatively limited dataset, rough screening prior
to precise ML-driven materials finding is effective.

In the present paper, we addressed the global screening stage for
exploration of the liquid substances assisted by ML techniques. To this
end, we propose to utilize one of the dimensionality reduction techni-
ques called self-organizing map (SOM) to enable visual understanding
of the diverse thermophysical properties from various liquid sub-
stances. Dimensionality reduction can be used when finding novel
materials with meeting a lot of requirements, which is the usual case in
the industrial process. SOM is one of the most appropriate techniques
for this purpose since we can keep proximity information on the low
dimensional mapping unlike the linear dimensionality reduction such
as the principal component analysis (PCA). Therefore, SOM has been
developed and progressively applied in a variety of engineering fields,
such as optimal design of aircraft wings [26] and development of
thermosetting polymer resin [27]. Here, we present a combined ap-
proach of SOM and clustering applied to a wide variety of the liquid
substances, and a possibility of our framework for materials screening
to enable us to design and explore better liquid substances more easily.

2. Data analysis

2.1. Self-Organizing Map (SOM)

SOM provides a data-mining technique which helps to understand
high dimensional data, such as various thermophysical properties of the
liquid species in the present case, by reducing their dimensions of the
data to typically a two-dimensional space, so that the relative re-
lationships among input data can be visualized intuitively [28,29]. In
this technique, the data are nonlinearly reduced to a low-dimensional
space with maintaining the neighborhood relationships among the
input data. This data mining technique is now utilized in various fields
to clarify relative relationships of complicated data.

In terms of machine learning, SOM is categorized into unsupervised
learning, which is based on a neural network (NN). Therefore, it is
interpreted as a feed-forward two-layer NN which is composed of an
input layer and an output layer. The input layer corresponds to all di-
mensions of the all input data (thermophysical properties in this study)
and all input-layer nodes are connected to all output-layer nodes.
Furthermore, each output-layer node has a vector composed of the
thermophysical properties. This is called a weighted vector with the
same number of dimensions as that of input data, and is updated
through a competitive learning process. Each node of the output layer
holds the coordinate information at low dimensions (two dimensions in
this study) concurrently, and the neighborhood relationships among
nodes in the output layer are expressed by these coordinates, i.e.,
projection onto the low-dimensional map.

Detailed algorithm of the SOM is given in previous literatures, so we
only make a brief explanation below. Let total numbers of the input-
layer and output-layer nodes be I and J, respectively, and component
vectors of the input-layer nodes and the weighted vectors of the output
layer at the t-th learning cycle are expressed as = …x x x x[ , , , ]I1 2 and= …t t t tm m m m( ) [ ( ), ( ), , ( )]J1 2 , respectively. As the first step of a
learning process, a weighted vector from all the output-layer nodes,
which has the highest similarity to the input data, is chosen and that
node is defined as a winner node, tm ( )c , as follows.=t tx m x m( ) min ( ) .k c j k j (1)

The weighted vector on the winner node is updated in such a way
that the vector gets closer to the input data; at the same time, the
output-layer nodes near the winner node also become closer to the
input data, depending on their proximity to the winner node. By re-
peating this learning process, similarities among the weighted vectors
on the output-layer nodes near the winner node increase. This update
process is repeated until the weighted vectors converge to obtain the
final SOM. Liquid species with similar thermophysical properties are
finally distributed closer on the SOM. The learning algorithm of SOM
can be roughly categorized into two types: online-learning SOM and
batch-learning SOM (BLSOM). This study adopted a batch type, in
which the learning result is not affected by an input order of the
learning data.

For the input data to be used in the present analysis, we have chosen
98 liquid substances which are categorized into alkane, alcohol, aro-
matic series, carboxylic acid, amine, ketone, ester, and halide. Under
standard temperature and pressure conditions, these substances are in a
liquid phase. Since the SOM learning does not allow missing data, i.e.,
SOM cannot be applied if a part of thermophysical properties is not
given in databases for a certain liquid substance, only 98 liquids, for
which thermophysical properties are fully available in the literatures
without any missing data, were examined. In the analysis, the following
eight thermophysical properties were chosen; they are mass density,
specific heat at constant pressure, melting point, boiling point, satu-
rated vapor pressure, surface tension, viscosity, and thermal
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conductivity, each of which was taken from the handbook and database
of liquid properties [30–35]. All the datasets are available as
Supplementary Material. Note that these thermophysical properties do
not have the same averaged value and variance over the tested 98 li-
quids, i.e., each property has a different data range. Therefore, they
were normalized into those with an average of 0 and a variance of 1
before they were used as the input data for learning. All the data ana-
lysis codes were implemented using python language (python 3.5) with
the SOMPY package [36].

2.2. Clustering approach

The output-layer nodes after the SOM learning have weighted vec-
tors whose components are multi-dimensional thermophysical proper-
ties, and the nodes, which are mutually close in distance in a high di-
mensional space, are placed at mutually near locations in the two
dimensional SOM. Furthermore, in order to easily visualize the nodes
with similar thermophysical properties, a clustering technique using a
k-means method [37] was performed. This unsupervised learning
method is one of non-hierarchical clustering techniques, which is used
to classify input data having multi-dimensional quantities into pre-
liminarily defined K clusters. In this method, K clusters’ gravity center,
i.e., centroid, are first given so as to be as far apart as possible each
other (the k-means++ method), and then all data points are engaged
in a cluster associated with the centroid to which the Euclidian distance
is closest. Next, the centroid is calculated from the data points be-
longing to each cluster again, and the data points belonging to each
cluster are updated. This process is repeated until the positions of
centroids and the data points belonging to each cluster converge. The
overall procedure of SOM-clustering approach described through
Sections 2.1 and 2.2 is summarized in Fig. 1.

2.3. U-Matrix method

A U-Matrix (unified distance matrix) method [38] is used to vi-
sualize the similarity between the adjacent nodes based on the distance
information between nearest neighbor output-layer nodes. Here, the U-
Matrix is given as

=U
N

m m1 ,i
i j

N

i j
i

(2)
where the output-layer node and the nearest neighbor output-layer
node are denoted as i and j, respectively, and Ni is the number of nodes
adjacent to node i. The U-Matrix gives local distance relationships be-
tween the nodes, and a large U-Matrix value would be regarded as a
boundary of the clusters where separation between the nodes are large.
In this study, the U-Matrix is used for examining “quality” of the clus-
tering result by using the k-means method.

3. Results of SOM-clustering approach

The SOM learning was performed on aforementioned 98 liquid
substances with eight thermophysical properties. A positioning map
where each substance is assigned to the output-layer node that has the
weight vector closest to each substance is presented using a 30× 30
map in Fig. 2. The clustering result obtained using the k-means method
as described in Section 2.2 is represented by the individual color des-
ignating each cluster. Originally, an attempt was made to determine the
number of clusters through the Elbow method and Silhouette analysis
[37]; the number adopted in the present study was 10, selected among
those which have relatively good (not best) results of the Silhouette
analysis (details not shown here). The liquid substances classified into
clusters are outlined as follows.

(1) Water (yellow-green, lower right) and glycerol (red, middle right
side) belong to independent clusters.

(2) Liquid species having small molecular weights and likely to form
hydrogen bonding, such as ethylene glycol and ethanolamine
(yellow, lower right)

(3) Alcohol and alkane liquids with relatively large molecular weights
(blue, right)

(4) Alcohol and alkane liquids with relatively small molecular weights
(light blue, bottom)

(5) Aromatic series and cycloalkane (purple, top center)
(6) Alkane smaller than 4), unsaturated alkane, and ketone (pink,

lower left)
(7) Halogen compounds with relatively small molecular weights (or-

ange, upper left)
(8) Halogen compounds with relatively large molecular weights (green,

upper left)
(9) Heavy halogen compounds substituted for two bromine and/or io-

dine molecules (light purple, top center)

As a whole, the SOM indicates that the liquid substances char-
acterized by each functional group are properly classified into groups. It
is found that the liquid species with special thermophysical properties
such as water or glycerol are automatically distinguished as an in-
dividual cluster and that halogen compounds are clearly separated as
other clusters. In addition, cyclohexane and benzene are placed in
mutually near positions in SOM, although their electronic structures are
different with each other.

Fig. 3 depicts results from the U-Matrix analysis. Red and blue re-
gions of the figure represent higher and lower values of the U-Matrix,
respectively. Therefore, liquid substances in a blue valley separated by
the red ridge have the larger deviation in thermophysical properties.
The result indicates that some liquid substances, which are classified
into the same cluster by the k-means method as shown in Fig. 2, have a

Fig. 1. Flowchart of overall SOM-clustering analysis.
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large distance in terms of thermophysical properties. This is because
relatively small numbers of the input data are used for learning as
compared to the defined number of clusters employed here. It will be
necessary to enlarge the number of liquid species for better examination
of SOM-clustering approach.

4. Consideration based on each thermophysical property

While the SOM itself can provide information concerning distance
relationships of the input data, more detailed information can be ex-
tracted by visualizing distributions of each thermophysical properties
projected onto the two-dimensional SOM, i.e., each component of the
weighted vectors, as discussed later. To briefly visualize the correla-
tions between various thermophysical properties, a correlation matrix
for all the thermophysical properties just obtained from the input data
is presented in Fig. 4. In this figure, we can find obvious strong corre-
lations, some of which are the positive correlation between boiling
point and melting point and negative correlation between boiling point
and saturated vapor pressure as expected. Meanwhile, interesting but
not straightforward correlations are also found between the specific
heat and thermal conductivity, the surface tension and thermal con-
ductivity, and density and specific heat for the tested liquids. In contrast
to the strongly correlated properties, several thermophysical properties

are less correlated, for example, between vapor pressure and density.
This weak correlation suggests that thermophysical properties are not
mutually in a trade-off relationship, which implies a possibility in de-
signing the liquid substances with a higher degree of freedom.

Fig. 5 shows various thermophysical properties represented as “heat
maps” after the SOM learning. In each figure, the positions of liquid
substances and the cluster boundaries are identical to those shown in
the SOM positioning map (see Fig. 2). Therefore, one can get a grasp of
a whole distribution of various thermophysical properties and correla-
tions of various liquid substances at a glance. For example, these heat
maps immediately give a strong negative correlation between density
and heat capacity, and specifically this correlation gets stronger near at
the cluster of halogen compounds (upper left). The result implies that
halogenation of the liquid molecule greatly influences specific ther-
mophysical properties and transport properties. In terms of searching
heat-transfer fluids, liquid substances having low viscosity and high
thermal conductivity are ideal, i.e., the high heat transfer coefficient
can be obtained with low pumping power. Such materials can be
readily found in Fig. 5 like methanol and allyl alcohol at the bottom
center and formic acid at the lower right as examples. In fact, methanol
has thermal conductivity of 0.202W/(m·K) and viscosity of
0.544mPa·s, whereas the 2-methyl-2-propanol, which is greatly sepa-
rated from methanol with large U-matrix ridge (see also Fig. 2 and

Fig. 2. SOM positioning map obtained from thermophysical properties of various liquids. The output nodes are classified via the k-means method and colored
separately by each cluster.
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Fig. 3), has lower thermal conductivity of 0.112W/(m·K) and higher
viscosity of 4.31mPa·s. Thus, we can easily separate superior sub-
stances among inferior ones in a certain practical use. In addition, if
heat-transfer fluids are used as a working fluid in a heat pipe (HP),

latent heat of vaporization is actively utilized to remove emitted
thermal energy effectively. In this case, the boiling temperature should
be within an appropriate range, taking into account operating condi-
tions. Assuming a HP is operated under the atmospheric pressure and
for cooling of electronic devices, liquid substances having high thermal
conductivity and low boiling point (in a temperature range shown in
Fig. 5) are desirable like methyl formate or methanol. Although many
other restricting conditions, e.g., inflammability, toxicity, and en-
vironmental impact, must be considered in actual industrial applica-
tions, a highly practicable data mining technique can be achieved by
involving such conditions into the framework of SOM.

5. Conclusions

We applied unsupervised machine learning protocols to multi-di-
mensional thermophysical data of liquid substances, and the liquid
substances were mapped in two-dimensional space using the SOM and
clustering techniques to visualize the proximity relationship. It was
demonstrated that this framework enabled us to easily understand re-
lative relationships of the thermophysical properties among liquid
substances. Grouping of the liquid substances was successfully achieved
via the clustering approach using the k-means method which was ap-
plied to the weighted vectors on output-layer nodes in the SOM. Various
thermophysical properties of the tested liquid substances were re-
presented as “heat maps” in the SOM. This visualization gives precise
correlations among thermophysical properties of a lot of liquid sub-
stances at a glance. Thus, the presented framework is useful for quick
design and exploration of the candidates of liquid materials for specific
applications.

Fig. 3. U-Matrix values on output nodes obtained
from the weighted vectors. Red and blue regions of
the figure represent higher and lower values of the
U-Matrix, respectively. Each liquid species is placed
at the same location as in Fig. 2. (For interpretation
of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. Correlation matrix for all the thermophysical properties. Each value
depicted in the boxes indicates the correlation coefficient between two ther-
mophysical properties.
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