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Stiffness and permeability multi-objective
optimization of carbon-fiber-reinforced
plastic mesostructures using
homogenization method
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Abstract
This paper presents a stiffness and permeability multi-objective optimization method for carbon-fiber-reinforced plastic
mesostructures based on a homogenization method. To reduce the computational cost of dealing with multiple design
variables for complicated fiber mesostructures, we generate and extract effective design variables from optimization results
derived from a smaller number of design variables. We applied the proposed method to optimization of the in-plane and
out-of-plane stiffness and permeability of non-crimp fabrics. The optimization results showed that the application of
effective design variables enabled attainment of an improved elastic modulus and permeability. From investigations of the
obtained optimized design, we clarified the trade-off relationship between the elastic modulus and permeability, and
elucidated the effects of dimensions of non-crimp fabric mesostructures on the elastic modulus and permeability.
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Introduction

For fiber material used in the resin transfer molding
(RTM) process of composites, optimization of the
mesostructure is important for improving the productiv-
ity while maintaining a constant level of quality. Studies
have been conducted on the elastic modulus and perme-
ability coefficient of fiber material mesostructures using
the homogenization method.1–4 However, to date, no
studies have been conducted that successfully realized
the optimization of multi-objective functions, such as
those related to the elastic modulus and permeability
coefficient for fiber material mesostructures.

Although the location in which design variables are
set is an important factor for the optimization, the
determination criteria remain unclear and are often
dependent on the experience of the designers. Studies
are therefore being conducted to achieve topology opti-
mization5–9 that derives optimized shapes, even with no
consideration of determination criteria. In topology
optimization, there is no need to set design variables,
and optimized shapes can be derived by setting only the
boundary conditions. However, there are no reported

examples of the application of topology optimization to
fiber material mesostructures with restrictive conditions
for fabrication. This lack is attributed to the difficulty
associated with obtaining optimization solutions.

Topology optimization is suitable for developing the
fundamental design during the early stages of the pro-
cess. Nevertheless, shape optimization is considered to
have potential for implementation to practical design
applications. As a result, to derive optimized solutions,
many researchers have performed shape optimizations
that incorporate several design variables that are
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available in advance. To derive superior optimization
solutions in an effective manner, design variables must
be reduced to effective design variables.10–14 This is
because the problematic aspect of increasing computa-
tional costs exists when the number of design variables
is increased. However, there are two primary problems
with previously used methods for optimization of fiber
material mesostructures.

First, in the extraction of effective design variables, the
optimization results were analyzed by incorporating as
many design variables as possible into the optimization
model. Because models that incorporate a large number
of design variables have complex shapes, the mesh gen-
eration becomes a bottleneck during analyses owing to
the amount of time required. Second, the criteria for the
extraction of effective design variables are arbitrary and
not based on any quantitative parameters.

In this paper, we therefore propose an optimization
method for the stiffness and permeability of carbon-
fiber-reinforced plastic (CFRP) mesostructures in an
efficient manner. The method generates effective
design variables from optimization results that are
derived from a smaller number of design variables.
Then, we examine the effectiveness of the proposed
method by considering the optimization problems of
the mesostructures of non-crimp fabric (NCF) material
arranged in molding during the RTM process. Finally,
we discuss the trade-off problems and dimension effects
of multi-optimization of fiber material mesostructures.

Methods

Optimization outline

Figure 1 outlines the proposed method in comparison
with a conventional method. The proposed method

involves the preparation of a simple fiber-material
mesostructure model that is expressed using the
minimum number of design variables to minimize the
computational time. We employ the homogenization
method to derive the elastic modulus and permeability
coefficient of the fiber material mesostructure. To maxi-
mize the elastic and permeability coefficients, we opti-
mize the dimensions of the fiber-material mesostructure
using the non-dominated sorting genetic algorithm 2
(NSGA-2),15 which is a multi-objective genetic algo-
rithm (MOGA).

The optimization results are next used as sample
data. These data include new design variables, which
are dependent variables of the original design variables.
The latter variables were produced by dividing the opti-
mization model into regions. Here, we verify the multi-
collinearity using a scatter plot matrix (SPM), while
variables that have a high correlation coefficient are
combined. After that, we generate the mathematical
formula for predicting the value of the objective func-
tions. To this end, we use genetic programing (GP) to
clarify the relationship between the design variables and
the objective functions, as well as to generate and
extract effective design variables for improving the opti-
mization solutions. The mathematical formula we use
to predict the value of the objective functions is referred
to as the prediction model, as described below.

To determine the relationship between the design
variables and the objective functions, an evaluation
standard for the prediction model must be established
when deriving a prediction model using the GP. We use
the GP to incorporate the concept of Akaike’s infor-
mation criterion (AIC)16 and the tolerance (TOL)17

concept into the evaluation standard for deriving pre-
diction models. The AIC indicates a good fit to the
sample data and prevents overfitting through

Figure 1. Conceptual scheme of the multi-objective optimization of fiber-reinforced composites using the homogenization method.
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minimization. Furthermore, we can use the TOL to
express the relationship between the design variables
and the objective functions with a valid prediction
model because multi-collinearity, which renders as
uncertain the codes that are included in the prediction
model, is prevented. Terms that are included in the pre-
diction model having large-valued coefficients may be
extracted as effective design variables.

Calculation of elastic and permeability coefficient for
the fiber-material mesostructure

In the case of fiber-reinforced composites, Young’s
modulus and the shear modulus can be predicted
using Halpin–Tsai equations,18 while the permeability
coefficient can be predicted using the Gebart method.19

However, these methods cannot predict the macro-
scopic properties of CFRP fabrics that have arbitrary
mesoscale structures. The homogenization method20

must therefore be used to connect macro- and
mesoscales.

The homogenization method defines the macrostruc-
ture (region !) having the same size as the inhomogen-
eous overall structure of the target considered for the
analysis, as well as the periodical unit structure that
has micro-inhomogeneity, as the mesostructure (region
Y). The ratio of the representative length of the macro-
structure l! to the representative length of mesostructure
lY is also defined, as shown in equation (1) (see Figure 2).

! ¼ lY
l!

ð1Þ

Furthermore, the coordinate of the macrostructure
is defined by x, while the coordinate of the mesostruc-
ture is defined by y. The relationship between x and y is
described below using scale ratio k

y ¼ x

!
ð2Þ

The following equilibrium equation, strain–
displacement expression, and constitutive equation
derived from the mechanics of elasticity are used to
derive the elastic modulus of the macrostructure elicited
by the mesostructure

@"!ij
@xi
¼ 0 ð3Þ

"!kl ¼
1

2

@u!i
@xj
þ
@u!j
@xi

 !

ð4Þ

"!ij ¼ D!
ijkl"

!
kl ð5Þ

where the physical quantities of the overall structure
depend on the mesostructure. Accordingly, the super-
script k is added. Furthermore, u!i is the displacement
of the overall structure. The principle of virtual work for
the overall structure shown below is derived by applying
to equation (3) the boundary conditions for the overall
structure as well as the Gauss divergence theorem

Z

!!

"!ij
@#u!i
@xj

d! ¼
Z

"!t

ti#u
!
i d" ð6Þ

where "!t is the mechanical boundary surface for the
overall structure, while ti is the surface force per unit
area.

Let us consider that the displacement u!i for the over-
all structure, which depends on the mesostructure, can
be expressed using an asymptotic expression, as shown
by the following equation

u!i ¼ u0i ðxÞ þ !u
1
i ðx, yÞ þ !

2u2i ðx, yÞ þ % % %
ffi u0i ðxÞ þ !u

1
i ðx, yÞ

ð7Þ

where u0i is the displacement of the macrostructure
and u1i x, yð Þ is the displacement disturbance of the
mesostructure. Equation (7) expresses the displacement
of the overall structure, together with the mesostructure
displacement disturbance and macrostructure displace-
ment. The mesostructure unit is assumed to be repeated
infinitely using the homogenization method. In other
words, we assign the extreme boundary of k! 0. The
partial differential of the overall structure then becomes
equation (8), as shown below, by using the combination
of equations (2) and (7)

@u!i
@xj
¼ @u

0
i

@xj
þ @u

1
i

@yj
ð8Þ

We apply the averaging approximation theorem
expressed by equation (9) to separate the principle of

Homogeniza!on
Localiza!on

W Y

x y

lY
lW

Figure 2. Multiscale simulation of the elastic body using the
homogenization method.
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virtual work for the overall structure, as expressed by
equation (6), into the integration domains of the
macrostructure and mesostructure

lim
!!0

Z

!!

 !d! ¼
Z

!

1

Yj j

Z

Y
 ðx, yÞdYd! ð9Þ

The integrand  (x,y) represents an inhomogeneous
physical quantity and a material constant. For equation
(9) to be valid, a periodicity must exist for Y.

We substitute equations (3), (5), (7), and (8) into
equation (6), and we apply the averaging approxima-
tion theorem to derive the macrostructural formula of
equation (10) and the mesostructural formula of equa-
tion (11).

Z

!

1

Yj j

Z

Y
Dijkl

@u0k
@xl
þ @u

1
k

@yl

! "
@#u0i
@xj
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ð10Þ

1

Yj j

Z

Y
Dijkl

@u0k
@xl
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1
k

@yl

! "
@#u1i
@yj

dY ¼ 0 ð11Þ

We discretize equations (10) and (11) using the finite-
element method (FEM) based on the hypothesis that
the mesostructural displacement disturbance u1i is pro-
portional to the macrostructural strain, represented by
equation (12), to derive the homogenized macrostruc-
tural elastic stiffness constant of equation (13)

u1i x, yð Þ ¼ $kli ðx, yÞ
@u0k
@xl

ð12Þ

DH
ijmn ¼

1

Yj j

Z

Y
Dijmn 'DijklB

1
l%$

mn
k%

# $
dY ð13Þ

where superscript H signifies the homogenized macro-
structural model. $kli x, yð Þ is referred to as the charac-
teristic displacement function, with periodicity in Y.
Subscript a in equation (13) represents the constituent
node number of an element.

Similar to the derivation of the elastic modulus, we
consider the Stokes flow of Newtonian fluid, and we
consider the solid phase to be undeformed to simplify
the derivation of the permeability coefficient. There are
two governing equations, namely the equation of con-
tinuity and the balance equilibrium of the liquid phase,
and we use the following equations

@v!i
@xi
¼ 0 ð14Þ

' @p
!

@xi
þ &! @

2v!i
@xj@xj

¼ 0 ð15Þ

where p represents the pressure, vi denotes the flow
velocity, and & represents the viscosity. Because the
physical quantities for the overall structure depend on
the mesostructure, we add superscript k. The boundary
condition for the solid and liquid boundaries is the
nonslip condition

v!i ¼ 0 on " ð16Þ

Here, when the extreme boundary of k! 0 is
assigned, &k is defined as

&! ¼ !2& ð17Þ

The above assumes that, when the extreme boundary
of k! 0 is assigned, the overall flow of the liquid
becomes slower with respect to k2. Let us consider
that the flow velocity and pressure for the overall struc-
ture can be expressed using an asymptotic expression,
as was the case in the previous section

v!i x, yð Þ ¼ v0i x, yð Þ þ !v1i x, yð Þ þ !2v2i x, yð Þ þ % % %
ffi v0i x, yð Þ þ !v1i x, yð Þ

ð18Þ

p!ðx, yÞ ¼ p0 x, yð Þ þ !p1 x, yð Þ þ !2p2 x, yð Þ þ % % %
ffi p0 x, yð Þ þ !p1 x, yð Þ

ð19Þ

where v j
i and pi are periodic in Y. Based on the rela-

tionship in equation (2), we can express the chain rule
of differentiation as follows

@

@xi

%%%%
!!

f

¼ 1

!

@

@yi

%%%%
Yf

þ @

@xi

%%%%
!f

ð20Þ

Equations (14) and (15) must be valid for the
respective orders of k. Equations (18) and (20) are
therefore substituted into equation (14) and rearranged
for the respective orders of k.

@v0i
@yi
¼ 0 ðorder of !'1Þ ð21Þ

@v0i
@xi
þ @v

1
i

@yi
¼ 0 ðorder of !0Þ ð22Þ

Rearranging equation (15) in a similar manner
results in the following

' @p
0

@yi
¼ 0 ðorder of !'1Þ ð23Þ

' @p
1

@yi
' @p

0

@xi
þ & @

@yj

@v0i
@yj
¼ 0 order of !0

# $
ð24Þ
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The following equation must be valid in order for
equation (22) to have v1 as the solution on the
mesoscale:

Z

Y

@v0i
@xi

dy ¼ 0 ð25Þ

Vi is the flow velocity on the macroscale and is
defined as

Vi ¼
1

Y

Z

Y
v0i dy ð26Þ

Based on equations (25) and (26), it then becomes
evident that the equation of continuity on the macro-
scale must be valid, as shown by the following equation

@Vi

@xi
¼ 0 ð27Þ

From equation (23), we see that p0 is not a function
of y.

Let us assume that the hypothesis in equations (28)
and (29) is valid based on the use of the characteristic
function21–23

v0i ¼ '
'ji
&

@p0

@xj
ð28Þ

p1 ¼ 'Aj
@p0

@xj
þ #p1 xj

# $
ð29Þ

where 'ji and Aj are characteristic functions with
periodicity in Y. In the same way, p denoted with a
bar is independent of yj. If we substitute equation (28)
into equation (21), and equations (28) and (29) are
substituted into equation (24), we can derive the
following3,21,22,24,25

@'ji
@yi
¼ 0 ð30Þ

' @Aj

@yi
þ @

@yk

@'ji
@yk
¼ '#ij ð31Þ

Similarly, for the boundary conditions, we substitute
equation (28) into equation (16) to derive the following

'ji ¼ 0 on " ð32Þ

Equations (30) to (32) comprise the governing equa-
tions on the mesoscale. By discretizing equations (30)
and (31) using the FEM and GLS method,26 we can
derive 'ji (see Appendices 1 and 2). The homogeneous

permeability coefficient tensor Kij is derived by taking
the volume average of 'ji in unit cells, as described
below

Kij ¼
1

Y

Z

Y
'jidY ð33Þ

The validation of the homogenized permeability cal-
culation is described in Appendix 2.

Genetic programming for the prediction model

For a good fit of the homogeneous elastic modulus and
the permeability coefficient, we use the GP to optimize
the prediction model, which indicates the relationship
between the objective functions and design variables
with the added dependent variables. We derive the
dependent variables by dividing the model into regions
and expressing the regions with combinations of design
variables. Furthermore, we normalize the respective
variables using equation (34) to assign a value within
the range of zero to one. This is because we compare
the impact of the design variables in terms of the coef-
ficients when the effective design variables are extracted
from the prediction model

~xi ¼
xi ' xminð Þ

xmax ' xminð Þ
ð34Þ

In the above equation, the variable denoted with a
tilde (() represents a normalized variable.

When deriving a prediction model using the GP, we
implement the AIC to a degree of fitness fi. We estab-
lish the AIC using the unbiased estimator of the
expected average logarithmic likelihood with reference
to the Kullback–Liebler (K-L) divergence, which indi-
cates the quality of the prediction model. The AIC for
the multiple regression models is described below
because prediction models derived by the GP are mul-
tiple regression models

fi ¼ n ln 2(
Se

n

! "
þ 1

! "
þ 2 mþ 2ð Þ ð35Þ

where n represents the number of samples, Se denotes
the sum-of-squares error, and m represents the number
of explanatory variables. The first term on the right
side of equation (35) signifies the size of the error for
the prediction model and the target of prediction, while
the second term signifies the complexity of the equation
for the prediction model. We can derive the intended
prediction model by minimizing fi.

Furthermore, there exists a problem of multi-
collinearity upon generating a prediction model.
Multi-collinearity is a problem that occurs when a
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number of variables with a high degree of correlation
exist within a prediction model. The task performed
involves the visualization of the correlation coefficient
between variables, which include newly defined depend-
ent variables. This is achieved using the SPM shown in
Figure 3 as well as classifying those variables that have
a correlation coefficient exceeding 0.7 as the same vari-
ables, thereby reducing them into one.

To prevent multi-collinearity of terms in the predic-
tion models generated with the GP, we use the TOL,
which is one of the indices for determining multi-
collinearity. The equation used to derive the TOL is
shown below.

TOLi ¼ 1' R2
i ð36Þ

In equation (36), Ri represents the determination
coefficient, with the number of degrees-of-freedom
being adjusted when the regression model is set up in

accordance with variable i. As described in Figure 4,
to prevent multicollinearity, we derive a prediction
model with a TOL for all variables equal to 0.1 or
higher by repeating the TOL evaluation of all variables
and removing the worst TOL variables. In this manner,
we derive the variables that significantly affect the
objective functions, and they are used as references
for the design variables for re-optimization.

Application to non-crimp fabric

Modeling

We applied to NCF the extraction method of the effect-
ive design variables proposed in this paper. We fabri-
cated an NCF model with a mesostructure, as shown in
Figure 5, and performed a multi-objective optimization
using NSGA-2. The fiber bundle is modeled by ortho-
tropic elastic materials, whereas the resin is an isotropic
elastic material. The properties of these materials
are listed in Table 1. The objective functions consisted
of the four coefficients, namely the elastic modulus and
permeability coefficient in the in-plane and out-of-plane
directions. The four objective functions are optimized

Figure 3. Scatter plot matrix showing the value of the correl-
ation coefficient.

Table 1. Material properties of fiber bundle and resin.

Fiber bundlea

(Vf 70%)
Young’s modulus E1 (GPa) 176

E2, E3 (GPa) 32.8

Shear modulus G12, G13 (GPa) 8.55

G23 (GPa) 5.46

Poisson’s ratio )12, )13 0.24

)23 0.19

Density * (g/cm3) 1.6

Resin Young’s modulus E (GPa) 3.50

Poisson’s ratio ) 0.37

Density * (g/cm3) 1.0

aSubscript 1 denotes the fiber bundle direction, whereas subscripts 2 and
3 denote the transverse direction.

Worst TOL > 0.1

Evaluate TOL
of predic!on model variables

Remove worst TOL variables

Y

N

Make predic!on model by GP

END

Figure 4. Scheme used to eliminate the multi-correlation in the
prediction model.

Figure 5. Design variables of the unit cell of the non-crimp
fabric operating at multi-objective genetic algorithm (MOGA0.
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simultaneously by obtaining the Pareto front, which is
the non-inferior solution group. Note that the
Pareto front cannot be obtained by the single objective
function comprising all parameters with some weights.
There were three design variables, as shown in Figure 5,
namely the fiber-bundling width (x1), fiber-bundle
thickness (x2), and fiber-bundle interval in the cross-
direction within a unit cell (x3). The unit cell repeats
periodically in three directions in this study. It should
be noted that directions 1 and 2 (i.e. in-plane) are
equivalent for the unit cell.

Generation and extraction of effective
design variables

The NCF model used in this study classifies the regions
of resins from the upper surface, as shown in Figure 6.
We then newly define the proportion of the volume of
resin in each region with respect to the volume of the
unit cell as dependent variables, Cr, Cba, Cbb, Hoa, Hob,
and Hoc.

To reduce the sum of the original design variables
normalized by the length of the unit cell, ~x1, ~x2, and ~x3,
and the six above-mentioned newly defined dependent
variables, we obtain their correlation coefficients using
the SPM. Based on the results, x1, Cr, Hob, and Hoc are
closely correlated and reduced to x1. Meanwhile, x3 and
Hoa are reduced to x3, which results in the formulation
of a prediction model with five variables, namely x1

0,
x2
0, x3

0, Cba, and Cbb.
We employ the cross-validation method to verify the

quality of the fit for the prediction model.27 This is per-
formed by separating all the data into the training data
used for the generation of the prediction model and the
test data that are handled as true values. The leave-one-
out cross validation involves the use of respective models
included in the Pareto solution as test data in sequence.

The results obtained from conducting a leave-one-
out cross validation on respective objective functions

are shown in Figure 7. The relationship between the
estimated values and true values indicates that the deter-
mination coefficient is equal to one in Figure 7(a) and
(b), while it is 0.94 in Figure 7(c) and (d). In both cases,
the values exceed 0.9, and the model is therefore con-
sidered a good-quality prediction model. We derive the
following equations after performing the GP.

E1 ¼ 7:0) 103 ) ~x1 ' 8:6) 102 ) ~Cbb ' 4:8) 102 ) ~Cba

þ 4:0) 102 ) ~x2 ) ~x1 þ ~Cbb

& '
þ 1:8) 102 ) ~x2

3 ) ~Cba

þ 1:0) 104

ð37Þ

E3 ¼ 2:5) 103 ) ~x1 ' 1:7) 103 ) ~x1
2 ) ~x3 ) ~Cbb

2
& '

þ 3:8) 102 ) ~x2 þ 2:8) 101 ) ~x2
2 ) ~x1 þ ~x3ð Þ

þ 5:6) 103

ð38Þ

K1 ¼ '2:1) 10'3 ) ~x1ð Þ þ 2:7) 10'3 ð39Þ

K3 ¼ '9:4) 10'3 ) ~x1ð Þ þ 9:6) 10'3 ð40Þ

Equations (37) to (40) are the prediction equations
for the in-plane and out-of-plane elastic modulus and
permeability coefficients. An overall assessment of
equations (37) to (40) reveals that ~x1 is included in all
of the prediction models, and the coefficients are larger,
significantly affecting the objective functions. A careful
assessment of ~x1 also reveals that the relationship
between the elastic modulus and permeability coeffi-
cients is a trade-off relationship.

Because x1 is a variable that is highly correlated with
Cr, Hob, and Hoc, we derive a design knowledge indicat-
ing that, in addition to the existing design variables,
increasing the design variables with respect to the

Figure 6. Defined dependent variables obtained by dividing the optimization model into regions.
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regions of Cr, Hob, and Hoc may realize an improved
fiber material mesostructure.

Re-optimization

Reflecting the design knowledge of the NCF model
derived in the preceding section, we increase the
number of design variables in the regions Cr, Hob, and
Hoc, as the fiber-bundle width (x1), fiber-bundle thick-
ness (x2), fiber-bundle width interval (x3), change rate of
the fiber-bundle width (x4), and fiber-bundle offset (x5),
as shown in Figure 8. It should be noted that the fiber-
bundle width change rate and fiber-bundle offset can be
controlled by stitching fiber bundles together28 in actual
applications. The cross-sectional areas of the fiber bun-
dles and fiber-volume fraction of the fiber bundle are

assumed to be fixed. Note that the fiber volume fraction
in the unit cell is not constant.

Figure 9 shows the Pareto solutions of in-plane and
out-of-plane properties obtained by optimization
before and after application of the effective design vari-
ables. The area marked by the dashed line indicates that
the Pareto solutions improve upon the application of
effective design variables. From Figure 9, we confirm
that the solutions of stiffness and permeability multi-
objective optimization improve in the overall Pareto
front by applying effective design variables.

Discussion

The optimal shapes that maximize each objective func-
tion are shown in Figure 10. The maximum values for
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Figure 7. Validation of the genetic programing (GP) prediction model derived using the proposed method. (a) In-plane Young’s
modulus, (b) Out-of-plane Young’s modulus, (c) In-plane permeability and (d) Out-of-plane permeability.

Figure 8. Design variables of the unit cell of the non-crimp fabric applied to the effective design variables operating at the multi-
objective genetic algorithm (MOGA).
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the respective objective functions and the optimal
dimensions for each objective function are shown in
Table 2. From Figure 10 and Table 2, we observe
that the change rate of the fiber-bundle width (x4) exhi-
bits an interdependent relationship between the elastic
modulus and the permeability coefficients; the max-
imum modulus has maximum x4, while the maximum
permeability has minimum x4. This implies that the
fiber-bundle width (x4) is attributed to the trade-off
for the elastic modulus and the permeability coeffi-
cients. This is because, as x4 increases, the transverse
fiber bundles spread in the in-plane direction, which
increases the elastic modulus. On the other hand, the
flow path between the fiber bundles decreases, which
results in a low permeability.

Moreover, by comparing Figure 10(c) and (d), the
fiber-bundle offset (x5) exhibits an interdependent

relationship between the in-plane and out-of-plane per-
meability coefficients; the maximum in-plane perme-
ability has maximum x5, while the maximum out-of-
plane permeability has minimum x5. This implies that
the fiber-bundle offset (x5) is attributed to the trade-off
for in-plane and out-of-plane permeability coefficients.
This is because, as x5 increases, the main (i.e. largest)
flow path between the fiber bundles located in the adja-
cent unit cell increases and the in-plane permeability
increases, while the projected flow path in the out-of-
plane direction decreases. Therefore, the out-of-plane
permeability decreases.

As a detailed investigation of the optimized dimen-
sions of NCF, we employed optimized solutions before
and after application of effective design variables as an
example in Figure 11. Comparing models (a) and (b)
in Figure 11, although model (b) has a 2.5% smaller

Figure 10. Comparison of the maximum values of each objective function before and after application of the effective design
variables. (a) In-plane Young’s modulus, (b) Out-of-plane Young’s modulus, (c) In-plane permeability and (d) Out-of-plane permeability.
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Figure 9. Comparison of the Pareto front of each objective function before and after application of the effective design variables.
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(a) (b)

Figure 11. In-plane and out-of-plane permeability inside the unit cell of the non-crimp fabric obtained by homogenization method.
(a) Before application of the effective design variables and (b) After application of the effective design variables.

Table 2. Design variables and objective functions of Pareto solutions having the maximum value of each objective function (numbers
marked with yellow are maximum objective function values).

Design variables Objective functions

x1 x2 x3 x4 x5 E1(GPa) E3(GPa) K1(m
2) K3(m

2)

In-plane Young’s modulus 0.60 0.10 0.30 1.03 0.03 17.9 8.59 7.70) 10'4 1.24) 10'3

Out-of-plane Young’s modulus 0.60 0.10 0.30 1.03 0.03 17.9 8.59 7.70) 10'4 1.24) 10'3

In-plane permeability 0.30 0.10 0.30 1.00 0.03 10.2 6.01 3.18) 10'3 1.15) 10'2

Out-of-plane permeability 0.30 0.10 0.30 1.00 0.00 10.2 6.00 3.07) 10'3 1.16) 10'2
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fiber-bundle width at the end of unit cell (x1) and a
1.1% lower fiber volume fraction in the unit cell (Vf),
model (b) has a 2.3% and 4.4% higher in-plane and
out-of-plane permeability, respectively, while maintain-
ing the elastic modulus. This is because the fiber-bundle
width at crimp (x1)x4) has a strong influence on
the elastic modulus (Table 3), and it is almost the
same value between the two models.

In addition, model (b) has a higher permeability than
that of model (a) because it has a 2.5% smaller fiber-
bundle width at the end of unit cell (x1), which adversely
affects the permeability (Table 3). Moreover, the smaller
x1 in model (b) means the expansion of the high perme-
ability region. From those facts, by adding the param-
eter of change rate of the fiber-bundle width (x4> 1), the
fiber-bundle width at the end of unit cell (x1) can be
suppressed while maintaining the fiber-bundle width at
the crimp (x1)x4), which enables attainment of the high
modulus and permeability.

Conclusions

We proposed an optimization method for the stiffness
and permeability of CFRP mesostructures by using a
homogenization method. The method generates effective
design variables from optimization results derived from
a smaller number of design variables. Furthermore, the
relationships between the objective functions and design
variables are formulated into mathematical expressions
that are based on statistical parameters. We examined
the effectiveness of the proposed method by considering
the optimization problems of the mesostructures of
NCF. In this application, we newly derived the effective
design variables as the change rate of the fiber-bundle
width and fiber-bundle offset in the NCF model in add-
ition to the initial variables. By reflecting the design
knowledge, we conducted another optimization.

The results confirmed that the fiber material struc-
ture attained higher elastic and permeability coefficients
compared to the case where the design knowledge was
not applied. In addition, from the investigation of opti-
mization results, we also clarified the trade-off

relationship between the in-plane and out-of-plane elas-
tic modulus and permeability, as well as the effects of
dimensions of NCF mesostructures on the elastic
modulus and permeability. In this study, we set the
in-plane and out-of-plane stiffness and permeability
along the axis as objective functions. Consideration of
these properties along an arbitrary direction as object-
ive functions may expand the performance space;
hence, this will be investigated in future work.
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Appendix 1

Calculation process of characteristic function 'j
i

The detailed calculation process of characteristic func-
tion 'ji from equations (30) and (31) is described below.
First, equation (30) is incorporated into equation (31)
to give

' @2'ji
@yk@yk

'
@2'jl
@yl@yi

þ @Aj

@yi
¼ #ij ð41Þ

Equations (30) and (41) are transformed into the
weak form using the Galerkin method.

Z

!
'wc

@'ji
@yi

d! ¼ 0 ð42Þ

Z

!

@w

@yk

@'ji
@yk
þ

"
@w

@yl

@'jl
@yi
' @w
@yi

Aj

(
d! ¼

Z

!
w#ijd!þ

Z

"
wtid"

ð43Þ

where ti is given as follows

ti ¼
@'ji
@yk

nk þ
@'jl
@yi

nl ' Ajni ð44Þ

In equation (43), the area integral term becomes zero
because the weighting function is set to be zero on the
boundary. Then, the characteristic functions 'ji and Aj
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are discretized based on FEM as follows

'ji ¼
XNEN'

m¼1
Nm'

j
im

Aj ¼
XNENA

m¼1
MmAjm

ð45Þ

where 'jim is a characteristic function of the flow vel-
ocity at node; Ajm is the characteristic function of the
pressure at the node; Nm and Mm represent shape func-
tions; and NENj and NENA denote the respective
numbers of 'jim and Ajm nodes over an element.

It should be noted that the weight function is the
same as the shape function as follows

w ¼ Nn

wc ¼Mn

ð46Þ

where n represents the constituent node number of an
element. Equations (45) and (46) are substituted into
equation (42) to derive

XNEN'

m¼1

Z

!
'Mn

@Nm

@yi
d!

) (
'jim ¼ 0 ð47Þ

Equations (45) and (46) are substituted into
Equation (43) to derive
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Z

!
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Equation (48) can be expressed as equation (49) in
expanded form
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Equations (47) and (49) can be expressed in the
matrix form

K11
* +

K12
* +

K13
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Kij (i¼ 1, 2, 3, and j¼ 1, 2, 3, 4) in equation (50)
corresponds to the left side of equation (49) and is
expressed as
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K34
nm ¼
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Mmd! ð51Þ

Kij (i¼ 4 and j¼ 1, 2, 3, 4) in equation (50)
corresponds to the left side of equation (47) and is
expressed as
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Fij (i¼ 1, 2, 3 and j¼ 1, 2, 3) in equation (50)
corresponds to the right side of equation (49) and is
expressed as

F1j
n ¼

Z
Nn#1jd!

F2j
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F3j
n ¼

Z
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Because the right side in equation (47) equals zero

F4
n ¼ 0 ð54Þ

K44
nm ¼ 0 in equation (52) means that the global stiff-

ness matrix has a zero term on the diagonal, which leads
to instability in the iterative solver of the linear equation.
To avoid this instability, the pressure approximation
must be at least one order lower than the velocity
approximation. This is known as the inf-sup condition.29

To meet the inf-sup condition, the mixed interpolation
function must be used, which results in complex code
and a high computational cost. Therefore, we use the
GLS method to stabilize equation (50) instead of using
the mixed interpolation function.

In GLS, the following stabilization term is added to
equations (42) and (43)
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where L and R are as follows
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+ is the stabilization parameter and is usually taken
to be26

+ ¼ 1

3

le
2

4)
ð58Þ

where le is the measure of the element length, and ) is
the kinetic viscosity. The stabilization term that is
added to equation (42) is
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The stabilization term that is added to equation (43) is
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Here, when the second derivative terms in equations
(59) and (60) are assumed to be zero, only equation (59)
remains, and it is expressed as
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For simplicity of calculation, * is taken to be one.
Therefore, [K44] and {F4} in equation (50) are as follows
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! "
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Equation (62) indicates that the zero diagonal term
of the global system in equation (50) is removed, and
the characteristic function 'ji can be obtained without
the instability problem.

Appendix 2

Validation of homogenized permeability calculation

We validated the homogenized permeability calculation
compared with well-known permeability models:
Gebart19 and Berdichevsky.30 Both models used here
assume the use of square-arrangement unidirectional
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fiber-reinforced material and are expressed as

Gebart model

K? ¼
16

9(
ffiffiffi
2
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ffiffiffiffiffiffiffiffi
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r
' 1

! "5=2
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Berdichevsky model
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2
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2

 !

ð66Þ
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R2
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2
' 3' Vf

# $
1' Vf

# $
 !

ð67Þ

where R is the fiber radius, and K? and K== are the
permeability in the transverse and parallel flow to the
fiber, respectively. The finite models in the case of
Vf¼ 60% are shown in Figure 12. For simplicity, the
resin viscosity is set to one.

(a) (b)

(c)

Figure 13. Validation results of homogenized permeability calculation for square arrangement of unidirectional fiber-reinforced
material. (a) Characteristic flow-velocity profile in transverse flow to the fiber ('1

1) and (b) parallel flow to the fiber ('3
3), where the

fiber-volume fraction is 20%. (c) Relationship between fiber-volume fraction and permeability obtained from the Gebart model,
Berdichevsky model, and homogenization method.

Figure 12. Micro-model of a square arrangement unidirectional
fiber-reinforced material used to calculate the homogenized per-
meability coefficient.
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The calculation results of the characteristic flow vel-
ocity profile are shown in Figure 13(a) and (b) in
the case of Vf¼ 20%. The relationship between
the fiber-volume fraction in the unit cell and the calcu-
lated homogenized permeability is shown in
Figure 13(c). In the transverse flow, the calculation

results agree with the Gebart model. In the parallel
flow, the calculation results agree with the
Berdichevsky model for low Vf, whereas they agree
with the Gebart model for high Vf. This tendency is
consistent with that of Verleye et al.31
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