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A B S T R A C T   

This paper proposes a novel response surface-based method for probabilistic tsunami hazard assessment (PTHA). 
Although recent advancements in numerical simulation have enabled the accurate characterization of tsunami 
hazards, the high computational cost of numerical simulation often prohibits its broad application to probabi-
listic hazard analysis. The proposed method addresses this challenge by constructing the response surface (RS) of 
a target output using the results of high-fidelity tsunami simulations. The proposed method quantifies un-
certainties in key simulation variables and propagates those uncertainties to the target output through the RS in a 
computationally efficient Monte Carlo simulation (MCS). We illustrate and validate the proposed method 
through a case study of the tsunami induced by the 2011 Great East Japan earthquake. The case study focuses on 
Sendai, Ishinomaki, and Kamaishi in Japan as the target locations. The proposed method estimates coastal 
tsunami heights while considering uncertainties in the fault slip and rake as well as the modeling error associated 
with the numerical simulation. The MCS allows us to estimate the probability density functions of the tsunami 
height at the target locations. The proposed method quantifies the contribution of each source of uncertainty to 
the overall uncertainty in the target output and thus facilitates engineering decision-making.   

1. Introduction 

Preparing for catastrophic natural hazards is a significant engineer-
ing challenge. The hardest part of this challenge is striking a balance 
between economy and safety; ensuring complete safety by structural 
measures incurs a prohibitive cost. To address this challenge, probabi-
listic approaches to evaluating such hazards and risks have been 
extensively discussed in the literature. In the field of seismic engineer-
ing, Cornell (1968) initiated an approach known as probabilistic seismic 
hazard analysis (PSHA). Subsequently, this approach has been studied 
by numerous researchers (e.g., McGuire, 1977; Anderson and Trifunac, 
1978; Ishikawa and Kameda, 1988) and summarized in several reports 
and books (e.g., National Research Council, 1988; Working Group on 
California Earthquake Probabilities, 1995, 2002; McGuire, 2004). 

Probabilistic tsunami hazard assessment (PTHA), which is based on 

PSHA, enables us to quantitatively evaluate the probability of tsunami 
risks with a certain return period; it is one of the practical tools being 
used for disaster mitigation. Many studies on PTHA have been reported 
in the literature (e.g., Power et al., 2007; Thio et al., 2007; Burbidge 
et al., 2008; Mitsoudis et al., 2012; Suppasri et al., 2012; Stefanakis 
et al., 2014; Fukutani et al., 2015; Park and Cox, 2016; Griffin et al., 
2016; Park et al., 2018; Park et al., 2019) and summarized in some re-
view papers (e.g., Geist and Parsons, 2006; Behrens and Dias, 2015; 
Grezio et al., 2017; Mori et al., 2017). In particular, Annaka et al. (2007) 
proposed a very simple practical method that has been implemented 
successfully in PTHA handbooks currently used in Japan (Japan Society 
of Civil Engineers (JSCE) 2011; JNES 2014). In this method, un-
certainties are classified into two types: aleatory uncertainties due to 
variations in actual phenomena and epistemic uncertainties due to in-
sufficiencies in the knowledge, data, and modeling accuracy. Aleatory 
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uncertainties are estimated based on the results of case studies and 
numerical simulations, whereas epistemic uncertainties are often 
handled using a logic-tree approach (e.g. Annaka et al., 2007; Burbidge 
et al., 2008, Omira et al., 2016). The design standard published by the 
American Society of Civil Engineers (ASCE) is particularly important in 
this field. This standard (American Society of Civil Engineers, 2017) 
provides an extensive PTHA framework that is widely recognized as the 
first systematic PTHA framework. This framework (detailed in Sections 
6.7 and C6.7 of the standard) provides a comprehensive guideline on 
determining inundation depths and flow velocities based on site-specific 
PTHA. This framework covers a broad range of uncertainties: epistemic 
uncertainties in model parameters (e.g., magnitude, fault depth, fault 
geometry, location, and slip distribution) and aleatory uncertainties (e. 
g., natural variability in source processes, modeling uncertainties, and 
tidal variation). By contrast, for illustration purposes, this paper’s PTHA 
focuses on the uncertainties in two fault parameters (i.e., slip and rake) 
and the modeling error for the 2011 Great East Japan earthquake. 
Geographically, the ASCE standard covers Alaska, Hawaii, and the Pa-
cific Coast of the U.S. concerning tsunami loads and effects. The stan-
dard recommends the use of 1) a statistically weighted logic tree 
approach to account for epistemic uncertainties and 2) probability dis-
tributions to account for aleatory uncertainties. For both types of un-
certainties, this study uses probability distributions, as discussed later. 
While the standard provides detailed guidance on numerical simulations 
for PTHA (e.g., model spatial resolution), it does not directly advise on 
computational costs of PTHA. This paper addresses this gap by propos-
ing a surrogate model-based computationally efficient way to perform 
PTHA. 

Numerical simulations have also become essential tools for tsunami 
hazard assessment. Currently, these simulations are highly accurate 
thanks to recent advancements in computational mechanics (e.g., Larsen 
and Fuhrman, 2019; Sarfaraz and Park, 2016; Qin et al., 2018). How-
ever, numerical simulations are currently not being fully utilized in 
PTHA. Specifically, in the Japanese PTHA handbooks, the use of nu-
merical simulations is restricted to obtaining the median value of the 
probability density function of the maximum tsunami height. The mean 
and standard deviation of the probability density function are estimated 
using a different empirical method proposed in the literature (e.g., Aida, 
1978). However, considering recent advancements in tsunami simula-
tions, we postulate that numerical simulations can be further used for 
PTHA. Hence, we propose a new method that effectively leverages nu-
merical simulations for PTHA. 

The novelty of the proposed method for PTHA lies in its use of the 
response surface (RS) of a target output, which is constructed based on 
the results of highly accurate tsunami simulations. Because tsunami 
simulations are computationally expensive, their direct use for 
comprehensive PTHA is computationally prohibitive. The current 
practice typically discretizes continuous probability distributions. For 
example, simulation runs are performed at 100 randomly chosen 
epicenter locations in a continuous geographic area (Mitsoudis et al., 
2012); alternatively, probability masses are assigned to 72 tsunami 
scenarios to sparsely represent a continuous spectrum of scenarios (Park 
and Cox, 2016). This discretization makes PTHA computationally 
feasible at the expense of an approximation error. We address this 
challenge by using the RS as a surrogate model of the tsunami simulation 
model. The key idea is that the RS allows the continuous simulation 
output to be accurately approximated by interpolating/extrapolating 
outputs obtained at nearby inputs. Thus, once the important un-
certainties are quantified (using empirical data, simulations, and engi-
neering knowledge), an extensive Monte Carlo simulation (MCS) can be 
performed with the RS to stochastically evaluate possible hazards and 
risks. In our case study, we use only 50 numerical simulation runs to 
construct the RS, which is in turn evaluated 10,000 times with an MCS to 
perform comprehensive PTHA. 

To demonstrate its capability, the proposed method is applied to a 
case study of the tsunami induced by the 2011 Great East Japan 

earthquake. Our PTHA considers uncertainties in the fault slip and rake 
along with the modeling error in the numerical simulations. Sendai, 
Ishinomaki, and Kamaishi in Japan are selected as target study locations. 
The RS at each location is obtained based on numerical simulations of 
coastal tsunami heights. Finally, the probability density functions of the 
tsunami height are estimated by performing an extensive MCS. 
Furthermore, we quantify the contribution of each source of uncertainty 
to the overall uncertainty to determine the relative importance of each 
source for engineering decision-making. However, we note that the risk 
assessment exemplified in this study may not be directly applicable to 
other practical cases where additional sources of uncertainties should be 
taken into account. A main objective of this paper is to demonstrate the 
specific procedure of the proposed method and to discuss its capability 
and potential for practical applications. 

2. Methodology 

2.1. Fundamental scheme of the proposed method 

In general, comprehensively evaluating the random field of a target 
output requires numerous simulation runs. Thus, using high-fidelity 
numerical simulations for this purpose is computationally expensive, if 
not infeasible. To address this problem, Honjo (2011) proposed a 
scheme, specifically for reliability-based design in geotechnical engi-
neering. In this scheme, numerical simulations are carried out to obtain 
a RS that describes the trend of the target output subject to specific 
uncertainties. This scheme is highly efficient for performing a practical 
reliability assessment and is the basis of the PTHA method proposed in 
this study. 

Fig. 1 shows the flowchart of the scheme proposed by Honjo (2011). 
The scheme consists of three phases: (i) geotechnical analysis, (ii) un-
certainty analysis, and (iii) reliability assessment. In the geotechnical 
analysis phase, a series of simulations are performed for different 
calculation conditions and sets of input parameters. The results enable 
the construction of the RS in a later phase; this RS models the rela-
tionship between the target output Y and the set X of key variables such 
as important calculation conditions and input parameters. This process 
informs the analyst of how each variable in X influences the target 
output. The analyst also develops a sense of the physics and mechanisms 
governing the output Y by analyzing the simulation results based on 
his/her engineering knowledge and experience. In the uncertainty anal-
ysis phase, the uncertainties underlying X are quantified using databases 
and engineering knowledge. For example, if X is a set of quantitative 
variables, their probability distributions or general tendencies (e.g., 
average and standard deviation) should be determined. In contrast, if X 

Fig. 1. Flowchart of the reliability-based design scheme proposed by 
Honjo (2011). 

T. Kotani et al.                                                                                                                                                                                                                                  



Coastal Engineering 160 (2020) 103719

3

is a set of qualitative variables, the probabilities of observing qualitative 
events are required. If the uncertainties in X are all captured in data-
bases, then quantifying the uncertainties in X is straightforward; how-
ever, in practice, it is usually necessary to rely on engineering judgments 
because of insufficient data. Finally, in the reliability assessment phase, 
the RS of the target output Y is constructed using the results of the 
geotechnical analysis. The RS is defined as a function of the key vari-
ables in X that describes the tendency of Y observed in the numerical 
simulations. Using the RS with the quantified uncertainties from the 
previous phase, a Monte Carlo simulation (MCS) is performed to obtain 
the probability density function of the target output Y. Because the RS is 
a surrogate model of the output, which is constructed based on the 
numerical simulations, the MCS results are expected to describe the 
same tendency observed in the numerical simulation results. Note that 
numerical simulation runs should be designed in careful consideration 
of the range of X because the RS aims to model the tendency of Y within, 
not beyond, the range of X. 

2.2. Proposed PTHA method 

In the reliability-based design scheme outlined in Section 2.1, the 
geotechnical analysis phase is separate from the other two phases. In this 
study, we propose replacing the geotechnical analysis phase with the 
tsunami analysis phase. 

Fig. 2 shows the flowchart of the PTHA method proposed in this 
study. The proposed method first specifies the target output. The output 
can be quantitative such as the tsunami height, or qualitative, such as 
whether an area is flooded. Then, the method specifies the key variables, 
such as important input parameters and calculation conditions used in 
the tsunami analysis. The key variables should be determined based on 
numerical simulations. Specifically, we can vary variables that are ex-
pected to significantly influence the target output based on engineering 
knowledge and experience. It is efficient to determine the ranges of these 
key variables while observing how the variables affect the simulation 
outputs. Note that a large number of simulation runs is not necessary 
because the goal is simply to identify the tendency of the target output 
with respect to key variables. 

There are two important uncertainties in numerical simulations, 
namely, transformation error and modeling error, according to Honjo 
(2011). The transformation error occurs when observational data are 
transformed into the input parameters of numerical simulations because 
the transformation is based on engineering assumptions and/or empir-
ical knowledge. Although a discussion of the transformation error in 

tsunami simulations would be interesting, this error is not taken into 
account in the present study. On the other hand, the modeling error 
captures the discrepancy between an empirical phenomenon and its 
numerical model; in other words, the modeling error represents the 
incompleteness of the model due to simplification and idealization and 
any inaccuracy due to discretization. This error is quantified in this 
study by comparing the simulated results with observational data. 

The uncertainty analysis can be performed in parallel with the 
tsunami simulations. The analysis begins by gathering statistical infor-
mation of the key variables. This information (e.g., mean, variance, and 
distribution type) is used to determine the probability distributions of 
the key variables. 

Subsequently, the reliability assessment is performed based on the 
results of the tsunami simulations and uncertainty analysis. Using the 
tsunami simulation results, an RS is constructed as an approximate 
function Y ’ FðXÞ. Note that the effects of bathymetry and topography 
are represented directly in the tsunami simulations and hence are also 
reflected in the RS. Then, we perform an MCS for the reliability 
assessment using the RS and the probability distributions of the key 
variables. 

Some related studies in the literature (e.g. Sarri et al., 2012; Sraj 
et al., 2014; Omira et al., 2015; Lorito et al., 2015; Selva et al., 2016; 
Volpe et al., 2019) also statistically analyze simulation results to reduce 
the total computational cost of PTHA. These studies, however, do not 
consider the modeling error of numerical simulations. To the best of our 
knowledge, this study is the first to quantify the effect of the modeling 
error in comparison to other uncertainties. 

3. Application 

3.1. Target output 

In this section, a case study is presented to illustrate the specific 
procedure of the proposed RS-based PTHA method and validate its 
capability. This case study concerns the tsunami induced by the 2011 
Great East Japan earthquake. We specified the tsunami height as the 
target output, and the proposed PTHA method was used to evaluate the 
tsunami heights at three coastal locations in Japan—Kamaishi, Sendai, 
and Ishinomaki (see Fig. 3). These locations are close to the coastline 
with water depths of 10–20 m. While this study focuses on the tsunami 
heights along the coastline as the target outputs for illustration purposes, 
future work can also use the proposed method to study tsunami runups. 

Fig. 2. Flowchart of the proposed RS-based PTHA method.  
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3.2. Step (i): Tsunami analysis 

3.2.1. Uncertainty in the tsunami hazard 
Various phenomena characterize a tsunami (e.g., initial uplift of the 

sea surface induced by fault movement, followed by propagation and 
runup), each with its own uncertainty. Because it is impractical to 
incorporate all possible uncertainties into a model, it is necessary to 
select and model the key uncertainties. The fault model is recognized as 
the most widely used model in tsunami analysis (Kajiura, 1963, 1982). 
Various fault parameters, including the fault slip and rake, are illus-
trated in Fig. 4. A JSCE committee summarized the influence of each 
fault parameter on the tsunami height (JapanSociety of Civil Engineers, 
2002). Based on previous studies, we selected the fault slip and rake as 
the two key variables in this study. To calculate the fault displacement, 
we used the Fujii–Satake model Ver. 8.0 (FS55v80) (Satake et al., 2013), 
which is one of the most widely used fault models for the 2011 Great 
East Japan earthquake (see Fig. 5). This model considers 55 subfaults 
and provides the spatial slip distribution. According to Goda et al. 
(2014), this model’s tsunami predictions “agree well with the tsunami 
observations.” 

3.2.2. Calculation conditions and governing equations 
As explained in the previous subsection, the Fujii–Satake model Ver. 

8.0 (FS55v80) considers 55 subfaults. We varied the slip and rake values 
in the tsunami simulation to assess their effects on the target output. As 
summarized in Table 1, we considered 50 test cases based on 5 slip 
values and 10 rake values to cover reasonable ranges of the parameters. 
The slip and rake values used in case S3R5 are the same as the original 
parameters of FS55v80. The other calculation conditions are given in 
Table 2. The initial distribution of the tsunami height relative to the 
standard sea level in Japan (Tokyo Peil) was obtained using the method 
proposed by Okada (1992), in which the vertical sea-surface displace-
ment is calculated using a fault model. To describe tsunami propagation, 
the following continuity equation (1) and nonlinear shallow water 
equations (2) and (3) were used: 

∂η
∂t þ

∂M
∂x þ ∂N

∂y ¼ 0 (1) 

Fig. 3. Measurement points for the tsunami heights: (a) Kamaishi, (b) Sendai, and Ishinomaki.  

Fig. 4. Illustration of the fault parameters.  

Fig. 5. Fujii–Satake model Ver. 8.0 (FS55v80) and the result of a centroid 
moment tensor (CMT) inversion (after Satake et al., 2013). 
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where η is the vertical displacement of the water surface; D is the total 
water depth; g is the acceleration due to gravity; n is the Manning co-
efficient; and M and N are the fluxes in the x and y directions, respec-
tively. The governing equations were discretized using the staggered 
leapfrog scheme (Goto and Ogawa, 1982; Goto et al., 1997). The 
calculation grids were generated as shown in Fig. 6 according to Ima-
mura et al. (2006). The computational domain was divided into calcu-
lation grids that were nested from the wave source to the target locations 

with grid intervals of 2430, 810, 270, and 90 m. For the area covered 
with grids of intervals 2430–270 m, ETOPO1 digital elevation data 
(Amante and Eakins, 2009) were used for the topographical conditions. 
For the area covered with a grid interval of 90 m, we used digital 
elevation data from the Digital 10 m Grid Elevation Map published by 
the Geospatial Information Authority of Japan. We also used the M7000 
series of isobathic data (JapanHydrographic Association, 2015), which 
are high-resolution seafloor topography data. The reflecting boundary 
condition was used on the coastline. 

3.2.3. Simulation results 
We began by checking the validity of the tsunami analysis model 

used in this study. As explained in Section 3.2.2, the conditions of 
calculation case S3R5 correspond to those of FS55v80. It is therefore 
possible to compare the S3R5 results with the empirical data of the 2011 
Great East Japan earthquake. The time histories of the wave heights at 
the five offshore points indicated in Fig. 5 were used as the observational 
data, as shown in Fig. 7. These data were collected by GPS wave re-
corders of the Nationwide Ocean Wave Information Network for Ports 
and Harbours (The Port and Airport Research Institute, 2011). As seen in 
Fig. 7, the simulation results generally match the observational data at 
the five offshore points. Any discrepancies represent the modeling error 
discussed in Section 2.2. Section 3.3.1 will detail how we quantified the 
modeling error. Note that because observational data are subject to 
measurement errors, the modeling error is also affected by measurement 
errors. 

The spatial distributions of the maximum tsunami height were 
determined within 180 min after tsunami generation, and the results are 
shown in Fig. 8. Additionally, the maximum tsunami heights at Sendai, 
Ishinomaki, and Kamaishi are summarized in Table 3 for the 50 cases. 
These results indicate that fault slip is the dominant parameter at all 
locations. 

3.3. Step (ii): Uncertainty analysis 

3.3.1. Quantification of uncertainties in key variables 
Uncertainties in key variables, represented as probability distribu-

tions, are important inputs for the MCS. To specify the probability dis-
tributions, we can use statistical information such as the average μ, 
standard deviation σ, and probability distribution type. There are two 
approaches to obtain this information: 1) estimation based on empirical 
data and 2) estimation based on engineering judgment and knowledge. 

In this study, we employed the former approach for the modeling 
error and the latter approach for the fault parameters (slip and rake). 
Table 4 shows the estimated statistical values for the key variables. 

In this study, normal distributions were used to represent epistemic 

Table 1 
Calculation cases.. 

Table 2 
Calculation conditions.  

Item Note 

Scenario Tsunami hazard of the 2011 Great East Japan 
earthquake 

Fault model Fujii–Satake model Ver. 8.0 
Initial waveform Calculate crustal deformation and sea-surface 

displacement using the method of Okada (1992) 
Governing equations Nonlinear shallow water equations 
Calculation scheme Leapfrog method and staggered grids 
Computational grid interval 

(with nesting) 
Domain 1: 2430 m; Domain 2: 810 m; 
Domain 3: 270 m; Domain 4: 90 m 

Boundary conditions Offshore boundary: transmitting boundary 
Landward boundary: reflecting boundary 

Tidal level Set at Tokyo Peil (T.P.) %0.57 m (coseismic tidal 
level) 

Calculation time 180 min from earthquake generation  

Fig. 6. Nested analysis regions.  
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uncertainties in the fault parameters (slip and rake). While the best 
distribution for the slip may be right heavy-tailed according to an in- 
depth study on the 2011 Great East Japan earthquake (Goda et al., 
2014), our use of a normal distribution serves to illustrate how to 
implement the proposed procedure when there is little to no empirical 
knowledge of the fault parameters. The choice of a normal distribution is 
justified according to the principle of maximum entropy when we can 
specify only the mean and variance of a continuous distribution to 
represent epistemic uncertainty (Dowson and Wragg, 1973). 

As mentioned in Section 3.2.2, the slip and rake values of each 
subfault were expressed as ratios with respect to the original FS55V80 
parameters. Thus, the values were normalized (see Table 1), and the 
average slip and rake values were set as 1.0. Based on the moment 
magnitude scale Mw, the slip and rake standard deviations were speci-
fied as 0.1 and 0.04, respectively. According to Kanamori (1977), Mw is 
related to the slip D as follows: 

log10M0 ¼ 1:5Mw þ 9:1; (4)  

M0 ¼ rDS; (5)  

where M0 is the seismic moment, r is the rigidity, and S is the fault area. 
Hanks and Kanamori (1979) proposed a modified relationship, but the 
original version, which is still widely accepted, is used in this study. As 
reported by JapanSociety of Civil Engineers (2011), the estimated 
standard deviation of Mw of an earthquake having the same magnitude 
as the 2011 Great East Japan earthquake is approximately 0.1. Using this 
value, the range of values of the normalized slip becomes 0.71–1.41. 
Because the range of a normal distribution is approximately &3σ, a slip 
standard deviation of 0.1 was used to cover the range of 0.71–1.41. The 
rake standard deviation was determined similarly. JapanSociety of Civil 
Engineers (2011) conducted calculations with different rake values and 
reported that &10' is a suitable rake range; this range becomes 0.9–1.1 
upon normalization. Therefore, a rake standard deviation of 0.04 was 

used to cover this range. 
The modeling error of the numerical simulation was also considered 

one of the uncertainties. The time histories shown in Fig. 7 were used to 
quantify the modeling error Merr, which is defined as the difference 
between the observed tsunami height Hobs and the simulated tsunami 
height Hsim: 

Merr ¼Hobs % Hsim: (6) 

Because we possessed time histories from both simulations and ob-
servations, the modeling error was quantified at numerous times. Fig. 9 
shows a histogram of the modeling error showing that the modeling 
error can be represented as a normal distribution with an average and 
standard deviation of approximately 0.49 and 0.76 m, respectively. Note 
that there are some limitations on the modeling error considered in this 
study; we considered only the time histories of the tsunami height at 
offshore points and did not take other effects into account. For instance, 
the rigid boundary conditions along the coastline have effects that 
should be considered. Other available information, such as tsunami 
runups and inundation areas, may be considered in future work. Addi-
tionally, note that in this study, a normal distribution was assumed to 
roughly capture the tendency of the modeling error. However, in gen-
eral, when choosing distributions to describe uncertainties, users of the 
proposed procedure would want to consider various parametric distri-
butions (e.g., a skew-normal distribution to better describe the positive 
skewness observed in the modeling error depicted in Fig. 9) as well as 
nonparametric distributions if the data size is sufficiently large. 

3.4. Step (iii): Reliability assessment 

3.4.1. Construction of the response surface 
The RS of the tsunami height was constructed using the tsunami 

simulation results in Table 3. In this study, the slip and rake were 
selected as the independent variables of the RS. The RSs at the three 

Fig. 7. Comparison between the observational data and simulation results at the offshore points shown in Fig. 5 (Observational data: Nationwide Ocean Wave 
Information Network for Ports and Harbors (The Port and Airport Research Institute, 2011). 

T. Kotani et al.                                                                                                                                                                                                                                  



Coastal Engineering 160 (2020) 103719

7

target locations (Sendai, Ishinomaki, and Kamaishi) were constructed 
separately because their responses were sufficiently different from each 
other. Prior to constructing the RSs, we investigated the tendency of 
each response with respect to each independent variable. From this 
investigation, we confirmed a linear relationship between the tsunami 
height and the slip and a nonlinear relationship between the tsunami 
height and the rake. These tendencies agree with the findings in relevant 
studies (Necmioglu and Ozel, 2014; Goda et al., 2014). Therefore, we 
added a quadratic term in the rake to the RSs. Additionally, a slip–rake 
cross term was included. The resulting form of the RS is 

Hmax ¼ aU þ bλ þ cUλ þ dλ2 þ e; (7)  

where Hmax is the tsunami height, U is the slip, λ is the rake, and a, b, c, d, 
and e are undetermined coefficients. Note that the modeling error is not 
included in Eq. (7). The coefficients were determined by fitting the re-
sults in Table 3. There are four terms that include the independent RS 
variables, and we considered 15 forms of RSs (all 24 forms except the 
constant RS). 

In general, we can use forward selection, backward elimination, 
stepwise methods, or other variable selection methods to optimize the 

RS efficiently for numerous independent variables. However, because of 
the relatively modest number of terms considered in this study, we 
checked every functional form using multiregression analysis. 
Tables 5–7 show the fitted value of each coefficient, the adjusted R2 

value, the residual standard error (r.s.e.), and the value of the Akaike 
information criterion (AIC) (Akaike, 1973) of the RS for each of the three 
target locations in Fig. 3. We selected the functional form with the 
lowest AIC value as the most suitable one. As a result, the same func-
tional form was selected coincidentally for Sendai, Ishinomaki, and 
Kamaishi. The selected forms are highlighted in boldface in Tables 5–7. 
The fact that the same functional form was selected for all the target 
locations means that the dominant terms were identical independent of 
location. The constructed RS for each target location is shown in Fig. 10, 
where the blue surface is constructed from the red points obtained from 
the numerical simulations (see Table 3). Because a visual inspection of 
Fig. 10 confirms that the variation in each RS is small between adjacent 
red points, the number of simulation runs seems sufficient. Note that 
determining the optimal design of computational experiments to build a 
surrogate model such as an RS is an active research topic in statistics (e. 
g., Stefanakis et al., 2014). 

Fig. 8. Spatial distributions of the maximum tsunami height for each calculation: (a) 90-m mesh shown in Fig. 6(a) and (b) 90-m mesh shown in Fig. 6(b).  
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The results show that the slip affects the tsunami height more than 
the rake does. This is in accordance with the findings reported in the 
literature. Although the tsunami height decreases with increasing rake 
at both Sendai and Kamaishi, the opposite tendency is seen at Ishino-
maki. We reason that this difference is due to the positional relationship 
between the locations of cities and the directions of tsunami propaga-
tion. Because the direction of the coastline at Ishinomaki is different 
from those at the other two cities, the rake would have a different effect. 

The modeling error is considered in each RS by adding Eq. (6) to Eq. 
(7). Hence, the final form of the RS is as follows: 

Hmax ¼ aU þ bλ þ cUλ þ dλ2 þ e þ Merr (8) 

The resulting RSs are used for the MCS in the next section. 

3.4.2. Monte Carlo simulation 
The MCS was performed using the RSs and the probability distribu-

tions of the key variables from the previous sections. Specifically, we 
first generated the values of the key variables (slip, rake, and modeling 
error) from the probability distributions. Using these values as inputs to 
the RSs, we evaluated the tsunami height at each target location. Using 
10,000 replications, we then estimated the probability density function 
of the tsunami height. 

3.4.3. Probability density of the tsunami height 
Fig. 11 shows the estimated probability density function of the 

tsunami height at each target location. Using the density function, we 
can estimate the exceedance probability for any tsunami height. In this 
study, as a validation of the proposed method, the tsunami height 
observed at each target location for the 2011 Great East Japan earth-
quake was used to estimate the exceedance probability; hence, the 
theoretical exceedance probability should be 50%. 

The tsunami heights observed at the target locations are summarized 
in Table 8. These heights were derived from tsunami trace height data 
collected in a field survey (Mori and Takahashi, 2012), from which we 
used the tsunami trace height reported at the survey point closest to each 
target location except for Sendai; because three survey points were 
located near the target location for Sendai, the average tsunami trace 
height was used. The tsunami heights estimated from the field survey 
and the calculated exceedance probability are shown in Fig. 11. For 
Sendai and Ishinomaki, the median values are close to the results of the 
field survey. For Kamaishi, the median value seems much larger than the 
field survey result (the exceedance probability is 91%). However, we 
note that their absolute difference is 1.5 m, which is only approximately 
10–15% of the field survey result. Because our numerical simulation 
used the perfect reflecting boundary condition despite the complex 
shape of the coastline near Kamaishi, we attribute this relatively large 
deviation to a wave amplification effect near the coastline. 

3.4.4. Calculation of contribution ratios 
The variance of the probability density function of a target output 

can be apportioned between multiple sources of uncertainties. It is 
practically important to analyze the sensitivity of the target output with 
respect to each uncertainty. In this section, the contribution ratio Ri of 
each uncertainty (i.e., in the slip, rake, and modeling error) is quantified 
as follows: 

Table 3 
Maximum tsunami heights for the 50 cases at Sendai, Ishinomaki, and Kamaishi.  

Case Slip Rake Tsunami height [m] 

Sendai Ishinomaki Kamaishi 

S1R1 0.700 0.735 7.695 4.226 10.003 
S1R2 0.700 0.815 7.880 4.443 9.950 
S1R3 0.700 0.877 7.911 4.626 9.845 
S1R4 0.700 0.938 7.808 4.780 9.693 
S1R5 0.700 1.000 7.759 4.897 9.484 
S1R6 0.700 1.062 7.590 4.982 9.210 
S1R7 0.700 1.124 7.496 5.033 8.951 
S1R8 0.700 1.185 7.266 5.049 8.593 
S1R9 0.700 1.247 6.974 5.034 8.197 
S2R10 0.700 1.309 6.745 4.981 7.714 
S2R1 0.850 0.735 9.296 5.036 11.803 
S2R2 0.850 0.815 9.309 5.295 11.724 
S2R3 0.850 0.877 9.255 5.516 11.571 
S2R4 0.850 0.938 9.273 5.694 11.345 
S2R5 0.850 1.000 9.272 5.834 11.077 
S2R6 0.850 1.062 8.986 5.927 10.757 
S2R7 0.850 1.124 8.702 5.982 10.369 
S2R8 0.850 1.185 8.481 5.994 9.962 
S2R9 0.850 1.247 8.285 5.975 9.537 
S2R10 0.850 1.309 7.877 5.919 9.046 
S3R1 1.000 0.735 10.587 5.824 13.476 
S3R2 1.000 0.815 10.805 6.125 13.382 
S3R3 1.000 0.877 10.658 6.384 13.210 
S3R4 1.000 0.938 10.612 6.598 12.956 
S3R5 1.000 1.000 10.654 6.762 12.681 
S3R6 1.000 1.062 10.281 6.878 12.308 
S3R7 1.000 1.124 10.205 6.943 11.828 
S3R8 1.000 1.185 9.859 6.954 11.334 
S3R9 1.000 1.247 9.370 6.907 10.737 
S3R10 1.000 1.309 9.107 6.824 10.160 
S4R1 1.200 0.735 12.402 6.827 15.770 
S4R2 1.200 0.815 12.735 7.185 15.672 
S4R3 1.200 0.877 12.732 7.487 15.468 
S4R4 1.200 0.938 12.662 7.744 15.161 
S4R5 1.200 1.000 12.603 7.942 14.836 
S4R6 1.200 1.062 12.331 8.085 14.396 
S4R7 1.200 1.124 11.926 8.171 13.826 
S4R8 1.200 1.185 11.513 8.211 13.257 
S4R9 1.200 1.247 11.119 8.169 12.537 
S4R10 1.200 1.309 10.511 8.064 11.775 
S5R1 1.400 0.735 14.454 7.830 18.282 
S5R2 1.400 0.815 14.410 8.226 18.099 
S5R3 1.400 0.877 14.581 8.552 17.827 
S5R4 1.400 0.938 14.582 8.823 17.516 
S5R5 1.400 1.000 14.434 9.057 17.109 
S5R6 1.400 1.062 14.287 9.226 16.520 
S5R7 1.400 1.124 13.875 9.338 15.906 
S5R8 1.400 1.185 13.325 9.384 15.204 
S5R9 1.400 1.247 12.575 9.366 14.438 
S5R10 1.400 1.309 12.041 9.263 13.553  

Table 4 
Statistical information on the fault slip, rake, and modeling error.  

Basic variables Average 
value 

Standard 
deviation 

Distribution function 
type 

Slip 1.0 0.1 Normal distribution 
Rake 1.0 0.04 Normal distribution 
Modeling 

error 
0.487 0.758 Normal distribution  

Fig. 9. Histogram of the modeling error approximated by a normal 
distribution. 
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Ri ¼
σ2

i
σ2

all
( 100 ½%*; (9)  

where σ2
i is the variance of the probability density function based only 

on the uncertainty i and σ2
all is the variance based on all the uncertainties. 

The results obtained from Eq. (9) for each target location are given in 
Table 9. For Sendai and Kamaishi, the contribution ratio of slip is 
approximately 60%, and that of the modeling error is approximately 

Table 5 
Response surface for Sendai.  

No. Coefficients of each term R2  r.s.e. [m] AIC 

a b C d e 

(t-value) 

1 12.4757 (29.684) 20.2928 (14.665) ¡3.3048 (¡8.225) ¡9.6583 (¡15.124) ¡9.1908 (¡11.561) 0.997 0.125 ¡59.30 
2  8.1858 (1.380) 8.4496 (27.649) %9.6583 (%3.371) 3.6591 (1.223) 0.944 0.561 89.92 
3 10.6590 (11.162)  %1.5426 (%1.692) %0.7472 (%1.600) 1.9786 (3.653) 0.984 0.297 26.41 
4 9.0688 (81.347) 16.8888 (8.173)  %9.6583 (%9.664) %5.6817 (%5.412) 0.993 0.196 %15.42 
5 12.4757 (12.169) 0.3800 (0.366) %3.3048 (%3.372)  0.7693 (0.708) 0.983 0.305 28.98 
6   8.4719 (%21.45) %5.7217 (27.50) 7.7667 (26.03) 0.942 0.566 89.95 
7 9.0688 (52.51)   %1.5135 (%12.94) 2.8170 (12.62) 0.984 0.303 27.43 
8 9.0688 (47.23) %3.0240 (%11.25)   4.2784 (12.45) 0.980 0.337 38.09 
9  %11.7271 (%19.40) 8.4496 (25.03)  13.6193 (26.34) 0.931 0.620 98.96 
10  16.889 (0.686)  %9.658 (%0.812) 3.659 (0.295) 0.026 2.330 231.37 
11 12.1162 (41.648)  %2.9562 (%12.995)  1.1611 (6.365) 0.984 0.302 27.12 
12    %1.5135 (%1.693) 12.1578 (11.789) 0.037 2.317 229.87 
13 9.0688 (24.837)    1.1611 (3.001) 0.926 0.640 101.35 
14  %3.024 (%1.633)   13.619 (7.032) 0.033 2.321 230.07 
15   4.6807 (5.707)  5.5320 (6.086) 0.392 1.841 206.87  

Table 6 
Response surface for Ishinomaki.  

No. Coefficients of each term R2  r.s.e. [m] AIC 

a b c D e 

(t-value) 

1 3.9609 (25.30) 12.9900 (25.20) 1.8460 (12.33) ¡6.2871 (¡26.42) ¡5.7844 (¡19.53) 0.9991 0.04658 ¡158.03 
2  9.14613 (4.811) 5.57792 (56.970) %6.28714 (%6.848) %1.70469 (%1.778) 0.9861 0.1797 %23.90 
3 2.7980 (4.864)  2.9741 (5.416) %0.5829 (%2.071) 1.3654 (4.184) 0.9862 0.1791 %24.27 
4 5.86388 (106.74) 14.89138 (14.62)  %6.28714 (%12.77) %7.74449 (%14.97) 0.996 0.09641 %86.19 
5 3.96092 (6.293) 0.02763 (0.043) 1.84598 (3.068)  0.69916 (1.048) 0.9849 0.1872 %19.81 
6   5.6029 (47.24) %1.8887 (%18.39) 2.8848 (25.11) 0.9795 0.218 %5.52 
7 5.86388 (45.393)   0.89442 (10.227) %0.25095 (%1.503) 0.9778 0.2267s %1.60 
8 5.8639 (50.62) 1.9290 (11.90)   %1.2609 (%6.08) 0.9822 0.2033 %12.51 
9  %3.8163 (%15.49) 5.5779 (40.52)  4.7789 (22.67) 0.9725 0.2527 9.24 
10  14.891 (0.937)  %6.287 (%0.818) %1.705 (%0.213) 0.02497 1.504 187.62 
11 3.9348 (22.062)  1.8713 (13.419)  0.7276 (6.507) 0.9852 0.1852 %21.81 
12    0.8944 (1.543) 5.7888 (8.657) 0.02743 1.502 186.55 
13 5.8639 (25.543)    0.7276 (2.992) 0.93 0.4029 54.94 
14  1.929 (1.613)   4.779 (3.821) 0.03168 1.499 186.33 
15   4.3514 (15.81)  2.1471 (7.04) 0.8356 0.6177 97.68  

Table 7 
Response surface for Kamaishi.  

No. Coefficients of each term R2  r.s.e. [m] AIC 

a b C d e 

(t-value) 

1 16.8426 (63.57) 18.4973 (21.21) ¡6.2884 (¡24.83) ¡8.8271 (¡21.93) ¡7.5201 (¡15.01) 0.9992 0.07881 ¡105.44344 
2  2.1523 (0.274) 9.5804 (23.676) %8.8271 (%2.326) 9.8278 (2.481) 0.932 0.7428 117.99572 
3 15.1866 (18.293)  %4.6821 (%5.907) %0.7045 (%1.735) 2.6610 (5.650) 0.9918 0.2584 12.41913 
4 10.3600 (60.840) 12.0202 (3.808)  %8.8271 (%5.783) %0.8431 (%0.526) 0.989 0.2988 26.94284 
5 16.8426 (18.803) 0.2982 (0.329) %6.2884 (%7.344)  1.5829 (1.668) 0.9913 0.2665 15.46987 
6   9.5863 (23.96) %7.7920 (%22.49) 10.9078 (28.15) 0.9333 0.7355 116.07724 
7 10.3600 (53.62)   %3.0302 (%23.17) 5.2057 (20.84) 0.9858 0.3391 38.64625 
8 10.3600 (46.80) %6.1789 (%19.94)   8.2599 (20.84) 0.9814 0.3885 52.26004 
9  %16.0467 (%21.18) 9.5804 (22.64)  18.9307 (29.20) 0.9256 0.7769 121.55742 
10  12.020 (0.427)  %8.827 (%0.648) 9.828 (0.691) 0.1226 2.669 244.95227 
11 16.5605 (65.17)  %6.0148 (%30.27)  1.8903 (11.86) 0.9914 0.2639 13.58715 
12    %3.030 (%2.969) 15.876 (13.481) 0.1375 2.646 243.14541 
13 10.3600 (15.377)    1.8903 (2.648) 0.8277 1.182 162.60447 
14  %6.179 (%2.921)   18.931 (8.555) 0.1332 2.652 243.39644 
15   4.423 (3.977)  7.865 (6.380) 0.2322 2.496 237.33548  
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30%. These results can be understood in light of the fact that, as 
mentioned in Section 3.4.1, the fault slip is the dominant parameter for 
the tsunami height. In contrast, for Ishinomaki, the contribution ratio of 
slip is approximately 30%, while that of the modeling error is approxi-
mately 60%. This indicates that the inaccuracy of the numerical simu-
lation at this target location contributes more to the overall uncertainty 
than that at the other two target locations. A possible reason for this is 
the effect of wave amplification near the coastline. However, to better 
understand this phenomenon, further investigation is needed because 
Kamaishi has an even more complex coastline shape than Ishinomaki. 

The contribution ratios of the rake for all the target locations are 
relatively small. This finding is also important because the uncertainty 
in the rake can be less emphasized in engineering decision-making. 

4. Conclusion 

We proposed a novel method for the response surface-based proba-
bilistic assessment of tsunami hazards that efficiently leverages 
advanced numerical simulations. The method was illustrated and vali-
dated through a case study evaluating the tsunami induced by the 2011 

Fig. 10. Response surfaces.  

Fig. 11. Exceedance probabilities.  
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Great East Japan earthquake. The method was employed to estimate the 
exceedance probabilities with reference to the tsunami trace heights 
observed in a field survey and attained overall consistent results. 
Furthermore, we quantified the contribution ratios of different un-
certainties and found that the fault slip and modeling error have much 
greater influences than the rake on the overall uncertainty of the 
tsunami height. 

The key feature of the proposed method is the use of an RS obtained 
from a series of numerical simulations that are computationally expen-
sive. By performing an MCS with the RS, we can efficiently estimate the 
probability density function of the target output. In addition, the pro-
posed method enables us to utilize advanced numerical simulations that 
are computationally expensive because these simulations were needed 
only to construct the RSs. Furthermore, we can determine engineering 
priorities by estimating the contribution of each uncertainty to the target 
output. The proposed PTHA method is flexible and allows us to assess 
various tsunami risks, for example, not only tsunami heights but also 
inundation areas. The novel method will also be useful for assessing the 
tsunami risks of future earthquakes along other coastlines that have 
experienced tsunami-induced damage in the past. 

Future work includes the extension of the proposed method to 
consider other uncertainties associated with tsunami hazards. Addi-
tionally, it is worth investigating adaptive RS models (e.g., Wong et al., 
2005) to use an increasing number of numerical simulation runs to 
efficiently build a surrogate model of the numerical simulation for 
PTHA. Another research direction is to use the proposed approach to 
validate numerical models involving notable geological indicators of 
tsunami runup and inundation. 
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Table 8 
Tsunami trace heights at the target locations (2011 Tohoku Earthquake Tsunami 
Joint Survey Group, 2011).   

Tsunami trace height [m] Position of tsunami trace 

Latitude Longitude 

Sendai 12.129 38.2183 140.986 
11.203 38.2187 140.986 
9.317 38.2184 140.985 

Ishinomaki 6.902 38.4139 141.287 
Kamaishi 11.426 39.2650 141.892  

Table 9 
Contribution of each source of uncertainty to the target output uncertainty.  

Target 
point 

Uncertainties (Key 
variables) 

Varianceσ2 

[m2]  
Contribution ratio 
[%] 

Sendai All 1.488 – 
Slip 0.904 60.7 
Rake 0.008 0.6 
Modeling error 0.580 39.0 

Ishinomaki All 0.925 – 
Slip 0.352 37.6 
Rake 0.008 0.9 
Modeling error 0.577 61.5 

Kamaishi All 1.779 – 
Slip 1.150 64.8 
Rake 0.049 2.7 
Modeling error 0.575 32.3  
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