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Optically black anti-reflective coatings that absorb light are potentially useful for color isolation in the flat panel
display industries and stray light reduction in imaging technologies. Here we report the design and fabrication of
high performance multilayered black anti-reflective coatings. Thin film suboxides NbyTi; — xO2, NbO, and TiO2_x
were prepared using pulsed laser deposition (PLD). Their optical constants were then used to design a six layer
coating which has less than 2% reflectivity across the visible range (400-700 nm) even at moderate incidence

angles. Furthermore, this six layer coating displays large and constant absorbance across the visible range
making it optically black. This optical behavior is due largely to the use of the suboxide Nb,Ti; —xO, which is
unique because of its spectrally constant absorption coefficient.

Coatings with wavelength independent optical absorption, trans-
mission and reflection are important for technologies such as imaging
and flat panel displays [1]. In flat panel displays, contrast performance
and light isolation are achieved by using a neutrally absorbing black
matrix material [2]. The black matrix also dictates the powered-off
appearance of the display. Ideally, the black matrix should absorb all
visible wavelengths with constant intensity. Such neutrally absorbing
materials are also important for stray light suppression in imaging
technologies [3]. It is important for absorbing materials to have good
anti-reflective properties in order to enhance their light isolation abil-
ities. High performance anti-reflective coatings display luminous re-
flectivity less than several percent across their intended spectral range
[4]. Additionally, their spectral reflectivity remains low even at high
incidence angles.

We recently identified a thin film suboxide material, Nb,Ti; —,O»
that has an optical absorption coefficient that is nearly independent of
incident light wavelength in the visible range [5]. This property is
unique among semiconducting materials used for light absorption. For
example, thin Si appears red because its absorption coefficient declines
with increasing wavelength [6]. Thin film Nb,Ti,_,0, appears opti-
cally black due to its wavelength independent absorption coefficient. It
has both semiconducting and metallic optical bands giving rise to its
unique absorption behavior [5]. Although Nb,Ti; —,O, has an optically
black appearance well suited for light isolation applications, thin films
prepared using pulsed laser deposition (PLD) have high reflectivity
around 30% even at moderate incidence angles due to their high re-
fractive index of 2.49 at 550 nm. Such high reflectivity is undesirable
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for imaging and display applications.

Here we report on the integration of Nb,Ti; 4O, and two related
suboxides NbO, and TiO,_ into anti-reflective multilayers. We fabri-
cated two multilayers: a four layer and a six layer. The suboxides, NbO,,
TiO,_x and Nb,Ti; —,O, were used as high refractive index layers. The
low refractive index layers were SiO,N, also deposited by PLD [7]. The
six layer coating displayed average reflectivity around 1.5% across the
visible range (400-700 nm) while maintaining a black appearance with
spectrally independent absorption. Periodic surface morphologies have
been used to achieve broadband anti-reflection properties [8-10].
However, fabrication of these patterned surfaces is often complex and
time consuming therefore our approach utilizes the smooth surfaces
produced by PLD.

In general, for oxide PLD under oxygen rich conditions, films are
very similar in composition and oxygen stoichiometry to the bulk tar-
gets used for their deposition. It has been shown that fully stoichio-
metric TiO, [7,11,12], NbyOs [13] and TiNb,O, [14-16] films de-
posited by PLD are optically transparent when deposited under
sufficient P,. However, there has been little investigation of the Nb-Ti-
O system deposited by PLD under the oxygen deficient conditions of a
vacuum. We found previously that PLD deposition in a vacuum using
TiO,, Nb,Os and TiNb,O, targets yielded the suboxide phases TiO; 4,
NbO, and rutile Nb,Ti;_,O,, respectively [5]. EDS indicates our
Nb,Ti; -xO, films have x = 0.71. The suboxide films are partially
transparent with varying degrees of black coloration. It should be noted
that TiO, suboxide ‘Magnéli’ phases have complex structures and stoi-
chiometries [17]. A phase study of our TiO, suboxide films related them
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most closely to Ti4O; but we will refer to them as TiO,_ since they are
amorphous with no regular ordering [5]. For the present study, we
deposited monolithic films in a vacuum ~1 X 10~°Pa on room tem-
perature and 600°C alkali-free glass substrates (OA-10,
15mm X 15mm X 0.5 mm, Nippon Electric Glass Co., Ltd.) in order to
obtain temperature dependent optical properties, phase information
and growth rates. Films deposited on substrates heated to 600 °C
showed moderate crystallinity while films deposited at room tempera-
ture were amorphous [5]. We used a KrF excimer laser (A = 248 nm)
repeating at 5 Hz and a laser fluence of 5.8 J cm ~ 2. Growth rates did not
vary drastically with temperature and were around 1-3 nm/min for all
compositions. The SiOxNy, films used for low index layers in the mul-
tilayers were deposited using a SizN, target with the same laser para-
meters stated above in an atmosphere with a constant Py, of 5Pa. The
growth rate of SiO,Ny, was ~10 nm/min.

Sufficient levels of oxygen vacancies shift the cationic valencies of
Nb and Ti, resulting in partially metallic phases that strongly absorb
visible light. Crystallinity influences both the magnitude and spectral
uniformity of the suboxide absorption coefficients. This effect is likely
due to temperature dependent oxygen deficiency and cationic co-
ordination [5,18]. We obtained refractive index, n, extinction coeffi-
cient, k and thicknesses of our monolithic films using spectroscopic
ellipsometry. Absorption coefficients were derived from the optical
constants. The effect of substrate temperature during deposition on
absorption coefficient is illustrated for Nb,Ti; —,O2, NbO, and TiO,_4
PLD thin films in Fig. 1a, b and c, respectively.

To design the anti-reflection stacks, we input our measured wave-
length dependent n and k values into the IMD [19] software package.
By defining a target reflectivity profile and a stack of thin film layers,
IMD assigns thicknesses within a defined range to layers in the stack
and solves the Fresnel equations for that set of thicknesses. The calcu-
lated reflectivity of the stack is then compared to the user defined target
profile and the set of thicknesses is given a figure of merit. IMD opti-
mizes layer thicknesses for the user-defined stack such that the target
reflectivity profile is closely matched. The optimization is based off a
genetic algorithm wherein a starting population of stacks with varying
layer thicknesses is randomly mutated until an individual with a sa-
tisfactory figure of merit is found [20]. This genetic modeling technique
is extremely useful for the design of functional optical coatings. In our
case, we fabricated several absorbing anti-reflective coatings designed
with this method and verified that optical performance predicted by the
model matches reality reasonably well.
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Fig. 2. Modelled and ellipsometrically measured reflection spectra at 50° in-
cidence of a) the four layer stack and b) the six layer stack. Schematically
shown are their constituent film make-ups and their measured thicknesses.
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Fig. 3. Reflection contour plot generated from the modelled six layer data.
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Fig. 4. Reflectance at 50° incidence and absorbance spectra of the six layer
stack and reflectance of a bare NbyTi; —xO> film. Inset are pictures of the six
layer at normal incidence (left) and ~60° incidence (right). A specular reflec-
tion from overhead lights is in the visible right image.

We first fabricated a four layer anti-reflective stack using NbO, and
TiO,_y as the high index layers and SiOsNy, [7] as the low index layers.
All layers were deposited at room temperature. A schematic diagram of
both composition and measured layer thicknesses is shown in Fig. 2.
Adjusting the model to the measured thicknesses yields the dashed line
in Fig. 2a. The adjusted model is in good agreement with the actual
reflectance measured by ellipsometry. The ellipsometry measurements
in Fig. 2 were taken at 50° incidence and the model line was calculated
for 50° incidence. TiO,_4 absorbs strongly in the 550-700 nm range
while NbO, absorbs strongly in 400-550 nm range as seen in Fig. 1b
and c, respectively. A specific thickness ratio of about 5:2 for
TiO,_x:NbO, was used in the four layer stack in order to achieve
constant absorption at all visible wavelengths. However, this thickness
ratio constraint resulted in an inconsistent spectral reflectance profile.

Our six layer stack used Nb,Ti; 4O, and TiO,_y as the high index
layers and again SiO,N, as the low index layers. The Nb,Ti, _,O, was
deposited at 600 °C while the subsequent layers were deposited at room
temperature. The six layer showed excellent anti-reflection and ab-
sorption properties compared to the four layer. It is known that anti-
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of the Nb,Ti; _,O, layer. Its use rather than NbO, removed the thick-
ness ratio constraint between the high index layers. The six layer re-
flectance profile is shown in Fig. 2b. Again, the model was adjusted to
reflect measured layer thicknesses after deposition; it is in good
agreement with the measured data. The model was then extrapolated to
simulate the six layer stack’s performance at incidence angles from 0 to
80° as shown in Fig. 3.

This six layer anti-reflective coating shows excellent performance
with reflectance below 2% across the visible range (400-700 nm) even
at fairly large incidence angles. Along with wavelength and incidence
angle reflectance, we are able to simulate film stack absorbance using
the model. The model uses the relationship A + T + R = 1. Our six
layer coating is still slightly transparent which is potentially useful for
light filter type applications. Although transmittance can certainly be
brought to zero by increasing the absorbing layer thicknesses.
Compared to bare Nb,Ti; _zO,, the six layer stack has drastically re-
duced reflectance as shown in Fig. 4.

Our suboxide absorbing anti-reflective coatings achieve excellent
broadband anti-reflective and absorbing properties without the use of
surface morphology. To our knowledge, this is the first use of Nb and Ti
suboxides for high performance anti-reflective and absorbing optical
coatings. The suboxide Nb,Ti;_,O, is especially well suited for in-
tegration into absorbing anti-reflective film stacks because of its nearly
constant absorption coefficient which results in a spectrally black ap-
pearance. We obtained optical constants n and k of single PLD films on
glass using spectroscopic ellipsometry. This data coupled with genetic
optimization software drove the design of multilayer stacked coatings.
After fabrication, we measured the thicknesses of individual layers in
the coatings and modelled their overall optical performance. Suboxide
materials have enormous potential for optical applications. Their
transmission, absorption and reflection properties can be manipulated
by varying oxygen content. Applying suboxide layers to multilayer
coating design is not limited to broadband anti-reflective coatings.
Narrow band and more exotic absorption and reflection properties can
certainly be realized in suboxide coatings with the use of genetic
modelling software.
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