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A B S T R A C T

An analytical three-dimensional effective elastic constant of transversely isotropic plates that
include ply cracks is proposed using a continuum damage mechanics approach. Two damage
parameters associated with tensile and shear damage are formulated as functions of ply crack
density using local stress fields that satisfy the equilibrium equations. Three-dimensional lami-
nate theory is then employed to formulate the effective compliance of the laminate using the
effective compliance of a damaged ply, and an analytical steady-state cracking model is estab-
lished. The proposed model reproduces the thermomechanical properties and the crack initiation
stress of laminates.

1. Introduction

In recent years, polymer matrix composites that have high specific strength and rigidity have been widely used in aerospace
materials. Unidirectional fiber-reinforced polymer matrix composites are highly anisotropic; therefore, practical applications gen-
erally require various types of laminates made by stacking unidirectional fiber-reinforced ply, the fracture processes of which must be
known to ensure safe design. The first form of damage in fiber-reinforced laminates is typically a ply crack [1], which grows to
traverse the thickness of the ply and penetrate in the width direction parallel to the fibers in that ply. Although ply cracks are not
critical to the final failure of composite laminates, these cracks significantly reduce the laminate’s stiffness. The initiation of ply
cracking results in stress concentration at the crack tip; therefore more severe damage, such as delamination and/or fiber breakage,
occurs at the crack tip [2,3]. Hence, the thermomechanical properties of laminates that include ply cracks should be appropriately
formulated to clarify the fracture mechanism of such laminates.

Several models for the stiffness reduction of laminates have been developed for cross-ply laminates [4,5], angle-ply laminates
[6–8], and general symmetric laminates [9–11]. However, a model for general laminates should also be developed to clarify the
fracture mechanism. Also, models for the stiffness reduction of laminates having arbitrary configurations have seldom been for-
mulated.

Continuum damage mechanics (CDM) [12–17] is widely used to formulate the effective stiffness of a ply (or laminate) including
ply cracks, and CDM has exhibited favorable compatibility with the laminate theory, which can address arbitrary configurations.
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Kachanov first proposed CDM [18]. Later, Allen et al. [12] and Talreja [16] applied CDM to fiber-reinforced composites. In CDM
models, damage parameters are used to represent the extent of damage in a material. The damage parameters can be formulated
using the average crack opening displacement based on linear fracture mechanics [19] or the local stress field model in a ply
including ply cracks [14,15]. Okabe et al. [15] formulated a two-dimensional effective compliance matrix of laminates including ply
cracks based on the damage tensor given by Murakami [13]. However, this compliance matrix is not symmetric, and does not allow
all properties of a damaged laminate including out-of-plane properties to be determined. A three-dimensional effective compliance
(or effective stiffness) matrix is absolutely essential for completely determining the thermoelastic properties of damaged laminate.
Talreja [16] characterizes eight material constants in the three-dimensional effective stiffness matrix of transversely isotropic
composite materials with ply cracks by formulating the Helmholtz free energy for isothermal small deformation and small damage
based on vector damage variables. Li et al. [20] associated these material constants derived by Talreja with elastic constants of
transversely isotropic materials and two damage parameters. They conducted a parametric study of crack geometry and distribution
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in a finite element-based study to determine the sensitivity of the effective stiffness matrix of a unidirectional composite plate with an
elliptical crack on the damage parameters; however, the formulation of these damage parameters was not explicitly derived.
Therefore, this study will attempt to determine formulations of these damage parameters analytically to accomplish the formulation
of a three-dimensional symmetric effective stiffness matrix of transversely isotropic material with ply cracks.

In this study, we developed a stiffness reduction model of transversely isotropic composite plates with ply cracks based on the
CDM approach formulated by Li et al. The two damage parameters were formulated as a function of ply crack density using local
stress field models that satisfy the equilibrium equations subjected to tensile loading normal to the fiber and in-plane shear loading.
These two damage parameters are implemented into the effective stiffness matrix of ply derived by Li et al. The three-dimensional
laminate theory is then employed to describe the stiffness reduction of composite laminate with arbitrary lay-up configurations and
ply cracks, and we validated this stiffness reduction model by comparing its results to experiment results and results of finite-element
analysis. Finally, the energy release rate associated with ply cracking is formulated using the effective compliance of composite
laminates. An energy-based steady-state cracking model is proposed, and the steady-state cracking stress of cross-ply laminates is
calculated for comparison with previous analytical models.

This paper is organized as follows. Section 2 presents the theoretical model proposed in this study. In Section 3, the present model
is compared with experiments and previous models for stiffness reduction and steady-state cracking of composite laminates. Section 4
presents the conclusions of this study. Furthermore, to help readers derive the formulation more easily, the Appendix describes the
coordinate conversion to the laminate coordinate system, the formulation of conversion matrix A for the stress and strain used in the
three-dimensional laminate theory, and the formulation of the three-dimensional laminate theory.

2. Theory

2.1. Three-dimensional effective stiffness matrix for a ply with ply cracks

Under the condition of small deformation and small damage, a stiffness matrix of unidirectional ply with multiple ply cracks was
derived using a CDM-based model [20]. As indicated in Fig. 1, the 1-axis is the fiber direction, the 2-axis is the transverse direction,
and the 3-axis is the thickness direction.

The ply crack planes are assumed to be parallel to the 1–3 plane, and these cracks penetrate in the fiber direction and the
thickness direction. According to Li et al., the relationship between the applied average ply stress σapp and the applied ply strain εapp

not considering the thermal residual strain in the damaged ply in Fig. 1 is

=σ Cε ,app app (1)

where

=σ σ σ σ σ σ σ[ ] ,app
1
app

2
app

3
app

23
app

13
app

12
app T

(2)

=ε ε ε ε γ γ γ[ ] ,app
1
app

2
app

3
app

23
app

13
app

12
app T

(3)

and the stiffness matrix of damaged ply C is the sum of the stiffness matrix C0 of undamaged ply and the damage-related stiffness
matrix C1, expressed as

= = +C C CC[ ] ,ij 0 1 (4)

Fig. 1. Schematic of multiple ply cracks parallel to the fiber direction.
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where = − −ν ν ν∆ 1 2 ,0
23
0

12
0

21
0 (7)

=ν E
E

ν ,21
0 2

0

1
0 12

0
(8)

= +G E
ν2(1 )

.23
0 2

0

23
0 (9)

Here, E is Young’s modulus, G is the shear modulus, and ν is Poisson’s ratio. The superscript 0 indicates the undamaged ply, and the
subscripts indicate the coordinate axes of the ply. The parameter ω is associated with tensile damage, and ξ is associated with shear
damage. These damage parameters are expressed as

= −ω E
E

1 ,2

2
0 (10)

⎜ ⎟= ⎛⎝ − ⎞⎠ξ
ω

G
G

1 1 ,12

12
0 (11)

where E2 is the Young’s modulus of the damaged ply along the 2-axis, and G12 is the shear modulus of damaged ply in the 1–2 plane.
We formulate the damage parameters with the local stress field models using the proportion of the average ply strain, which

ignores the crack opening displacement, to the applied ply strain considering crack opening displacement. When average stress σ2
app is

applied to the ply along the 2-axis, the average ply strain ε2
ave and the applied ply strain ε2

app along the 2-axis can be described as

=ε σ
E

,2
ave 2

app

2
0 (12)

=ε σ
E

.2
app 2

app

2 (13)

Using Eqs. (12) and (13), Eq. (10) is rewritten as

= −ω ε
ε

1 .2
ave

2
app (14)

As for damage parameter ξ , which is a constant, when the ply is subjected to the shear stress σ12
app in the 1–2 plane, the average ply

engineering shear strain γ12
ave and the applied ply engineering shear strain γ12

app in the 1–2 plane are written as
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=γ σ
G

,12
ave 12

app

12
0 (15)

=γ σ
G

.12
app 12

app

12 (16)

Using Eqs. (15) and (16), Eq. (11) can be reformulated as

⎜ ⎟= ⎛⎝ − ⎞⎠ξ
ω

γ
γ

1 1 .12
ave

12
app

(17)

Eqs. (14) and (17) can be formulated as functions of ply crack density (i.e., the number of ply cracks per unit length normal to the
crack plane) using the local stress field models for ply including cracks subjected to tensile loading along the 2-axis and shear loading
in the 1–2 plane. The effective stiffness matrix C is valid when damage parameter ω is very small (i.e., ≪ω 12 ). The maximum value
of damage parameter ω when the model works effectively will discussed in Section 3.1. The next subsection describes the formulation
of the three-dimensional local stress field model with the damage parameters.

2.2. Damage parameters

A three-dimensional local stress field model of a ply that includes ply cracks was formulated to evaluate stiffness reduction. When
formulating the local stress field model, the ply was assumed to be thin, and the damage was assumed to be caused mainly by ply
cracks. Based on these assumptions, the damage due to delamination and fiber breakage were ignored.

A three-dimensional local stress field model is first formulated to subject the stress σ2
app along the ply’s 2-axis. Fig. 2 presents a

representative volume element (RVE) that includes ply cracking on both sides of a part of the ply illustrated in Fig. 1.
The coordinate system in Fig. 2 differs from that in Fig. 1: the coordinates x y, , and z in Fig. 2 correspond to the 3-, 2-, and 1-axes

in Fig. 1. The ply cracks are assumed to have tunnel-like crack surfaces that are symmetrical about the y-axis and are postulated not to
propagate into the neighboring ply. The crack spacing is l2 , the thickness of the ply is =t t2k , and the width of the ply is h2 . The
displacements in the x-, y-, and z-directions are defined as u v, , and w. The ply strain ε2

app along the y-axis (or 2-axis) is applied to the
RVE (or ply). Because RVE is symmetric, the region of interest in this definition is limited to ⩽ ⩽ ⩽ ⩽ ⩽ ⩽x t y l z h0 , 0 , 0 . The
strain-stress relationship in the RVE is expressed as

= ∂∂ = − −ε u
x

σ
E
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σ ν
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y z
2
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23
0

2
0

21
0
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z
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,z x y
z21

0

2
0

21
0

2
0

1
0 (20)

Fig. 2. Representative volume element subjected to tensile loading.
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where σi ( =i x y z, , ) is the stress along the i-axis, εi is the strain along the i- axis, σij ( = ≠j x y z j i, , ; ) is the shear stress in the i-j plane,
and γij is the engineering shear strain in the i-j plane. For engineering shear strains γxy and γyz, the partial differential coefficients ∂ ∂u y/
and ∂ ∂w y/ are assumed to be quite small, and the engineering shear strain γzx is approximated as zero. Following Okabe et al. [15], the
relationships between the strains εi are assumed as=ε aε ,x y (24)

=ε bε ,z y (25)

where a and b are proportionality constants defined to satisfy the equilibrium equations of stress. The physical meaning of a and b is
the average Poisson’s ratio in the RVE. Using Eqs. (18)–(20), (24) and (25), σ σ,x y, and σz are expressed as
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In addition, using Eqs. (21)–(23), the shear stresses σ σ,xy yz, and σzx are described as

= ∂∂σ G v
x

,xy 23
0

(29)

= ∂∂σ G v
z

,yz 12
0

(30)=σ 0.zx (31)

The equilibrium equations of stress are expressed as∂∂ + ∂∂ + ∂∂ =σ
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σ
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σ
z

0,x xy zx

(32)

∂∂ + ∂∂ + ∂∂ =σ
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Assuming that ∂ ∂ ∂ ≠v x y/ 02 and ∂ ∂ ∂ ≠v y z/ 02 , and substituting Eqs. (26)–(31) into Eqs. (32)–(34), the proportionality constants a
and b and the Laplace equation for displacement v are obtained as
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where constants λ1 and λ2 are defined as
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To determine displacement v, the boundary conditions of the Laplace equation in Eq. (37) are given by= =v y0 on 0, (40)∂∂ = =v
y

y l0 on ,
(41)∂∂ = =v

x
x0 on 0, (42)∂∂ = =v

z
z h0 on ,

(43)∂∂ = =v
z

z0 on 0,
(44)= =v ε y x ton .2

app (45)

At =y 0, no displacement v is considered in Eq. (40). Eq. (41) was determined from Eqs. (26)–(28) considering the stress condition= = =σ σ σ 0x y z at the crack surface ( =y l). Eq. (42) was defined based on Eq. (29), considering the shear stress condition =σ 0xy on
the center plane at =x 0 of the ply. Eq. (43) means that shear stress σyz expressed by Eq. (30) is zero on the surface at =z h, and Eq.
(44) expresses that the shear stress σxy is zero on the center plane at =z 0 of the ply. In addition, the displacement distribution in the
interface, presented as Eq. (45), is assumed based on the previous study [14]. Therefore, the neighboring ply is thought to be
deformed uniformly by mechanical loading ε2

app, regardless of the ply cracks. Separating variables and assigning the boundary
conditions presented above to Eq. (37), the solution v x y z( , , ) of the Laplace equation that satisfies the boundary conditions can be
expressed as

∑⎛⎝⎜ ⎞⎠⎟ = ⎛⎝⎜ − − −− ⎡⎣ − ⎤⎦⎞⎠⎟=
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(46)

When Eq. (46) is substituted into Eqs. (26)–(31), the local stress distribution under tensile loading along the 2-axis in the RVE is
derived as
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Thus, the local stress distribution in a ply that includes ply cracking is formulated. As indicated in Eqs. (46)–(54), the displacement v
and the local stress distribution in a ply are constant with respect to the z-axis, and the shear stresses σyz and σzx are always zero. When
the boundary condition given in Eqs. (40)–(45) is utilized, this local stress field model is close to the generalized plane strain state.
The compatibility condition for the strain is not satisfied because of the assumption used in Eqs. (24) and (25). For carbon fiber
reinforced plastic (CFRP), the local stress field model almost satisfies the plane strain condition because a is much larger than b.
However, a is the same order as b when considering glass fiber reinforced plastic (GFRP). Therefore, parameters a and b that are
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average Poisson’s ratio are needed for GFRP ply. Strictly, a and b are functions of x y, , and z. However a and b are approximated by
constants that satisfy the equilibrium equation of stress in the present model. Therefore, the proposed stress distributions are ana-
lytical solutions, but not exact solutions. Damage parameter ω can be formulated using the three-dimensional stress field model under
tensile loading along the 2-axis. The average ply strain ε2

ave is defined as∫ ∫ ⎜ ⎟= ⎛⎝⎜ ⎛⎝ ⎞⎠ ⎞⎠⎟ε
lth

v x l z dx dz1 , , .
h t

2
ave

0 0 (55)

By substituting Eq. (46) into Eq. (55), ε ε/2
ave

2
app is derived as∑= − −

=
∞ε

ε π λ t n
n πλ t ρ

ρ
16 1

(2 1)
tanh[(2 1) /2] ,

k n

k2
ave

2
app 3 1 1

3
1

(56)

where =ρ l1/(2 ) is ply crack density, and the thickness of the ply is defined as =t t2k . Using the above equation, Eq. (14) is
reformulated as a function of ply crack density.∑= − − −

=
∞

ω
π λ t n

n πλ t ρ
ρ

1 16 1
(2 1)

tanh[(2 1) /2]
k n

k
3 1 1

3
1

(57)

As illustrated in Fig. 3 (a), a crack with a semi-tunnel-like surface may occur at the laminate surface.
In a thin laminate, surface cracks seriously affect the laminate’s mechanical properties. Fig. 3 (b) depicts an RVE of a ply that has

semi-tunnel-like cracks on the surface. Here, the area delineated by ⩽ ⩽ ⩽ ⩽x t y l0 2 , 0 , and ⩽ ⩽z h0 should be considered, be-
cause the RVE in Fig. 3 (b) is symmetrical with respect to the z-x and x-y planes. The mechanical behavior of a ply with a surface crack
is assumed to be equal to the mechanical behavior of a ply with a ply crack that has twice the length of a surface crack. Based on this
assumption, the surface crack can be considered by replacing ply thickness tk with a thickness of t2 k. Thus, damage parameter ω can
be represented to consider the surface crack by replacing tk in Eq. (57) with t2 k as follows.∑= − − −

=
∞

ω
π λ t n

n πλ t ρ
ρ

1 8 1
(2 1)

tanh[(2 1) ]
k n

k
3 1 1

3
1

(58)

When the cracks in a ply are considered, Eq. (57) is appropriate; Eq. (58) is appropriate to consider a ply with a surface crack.
Next, damage parameter ξ is derived to consider the damage due to ply cracking parallel to the fiber by formulating the local

stress distribution of a ply with ply cracking subjected to shear loading. Fig. 4 depicts an RVE that includes a ply crack on both sides,
which is a part of the ply illustrated in Fig. 1.

The x-, y-, and z-coordinates in Fig. 4 correspond to the 3-, 2- and 1-axes in Fig. 1. The in-plane ply shear stress σ12
app is applied to

the corresponding ply. The crack distance is l2 , and the ply crack is assumed to have a tunnel-like surface that is symmetrical about
the y-axis. Because the model is symmetric, the range is limited to ⩽ ⩽ ⩽ ⩽ ⩽ ⩽x t y l z h0 , 0 , 0 . The deformations are assumed as= =u x y z v x y z( , , ) ( , , ) 0, (59)

Fig. 3. (a) Ply including surface cracks. (b) Representative volume element.
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=w w x y( , ). (60)

Under these assumptions, the strains of the cracked ply are expressed as

= ∂∂ = − − =ε u
x

σ
E

ν
E

σ ν
E

σ 0,x
x

y z
2
0

23
0

2
0

21
0

2
0 (61)

= ∂∂ = − + − =ε v
y

ν
E

σ
σ
E

ν
E

σ 0,y x
y

z
23
0

2
0

2
0

21
0

2
0 (62)

= ∂∂ = − − + =ε w
z

ν
E

σ ν
E

σ σ
E

0,z x y
z21

0

2
0

21
0

2
0

1
0 (63)

= = ∂∂ + ∂∂ =γ
σ
G

v
x

u
y

0,xy
xy

23
0 (64)

= = ∂∂ + ∂∂ = ∂∂γ
σ
G

v
z

w
y

w
y

,yz
yz

12
0 (65)

= = ∂∂ + ∂∂ = ∂∂γ σ
G

u
z

w
x

w
x

.zx
zx

12
0 (66)

From Eqs. (59)–(66), the stresses of the cracked ply are expressed as= = = =σ σ σ σ 0,x y z xy (67)

⎜ ⎟= ∂∂ ⎛⎝ ⎞⎠σ G w
y

x y, ,yz 12
0

(68)

⎜ ⎟= ∂∂ ⎛⎝ ⎞⎠σ G w
x

x y, .zx 12
0

(69)

When the stresses expressed by Eqs. (67)–(69) are substituted into equilibrium Eqs. (32)–(34), the Laplace equation for displacement
w is obtained as∂∂ + ∂∂ =w

x
w

y
0.

2

2

2

2 (70)

To determine the displacement w, the boundary conditions of Eq. (70) are given by= =w y0 on 0, (71)

∂∂ = =w
y

y l0 on ,
(72)

Fig. 4. Representative volume element subjected to shear loading.
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∂∂ = =w
x

x0 on 0, (73)

= =w γ y x ton ,12
app (74)

where γ12
app is the applied ply shear strain. At =y 0, displacement w is not considered in Eq. (71). Eq. (72) is determined from Eq. (68),

considering the shear stress condition =σ 0yz at the crack surface ( =y l). Eq. (73) is defined based on Eq. (69) considering the shear
stress condition =σ 0zx on the center plane ( =x 0) of the ply. In addition, in the displacement distribution at the interface ( =x t),
presented as Eq. (74), the neighboring ply is assumed to deform uniformly by γ12

app, regardless of the ply cracks. Separating variables
and assigning the boundary conditions presented above to Eq. (70), the displacement w x y( , ) of the Laplace equation can be ex-
pressed as

∑⎛⎝⎜ ⎞⎠⎟ = − − −− ⎡⎣ − ⎤⎦=
∞ +

w x y l
π n

n πx l
n πt l

n
l

πy γ, 8 ( 1)
(2 1)

cosh[(2 1) /(2 )]
cosh[(2 1) /(2 )]

sin 2 1
2

.
n

n

2
1

1

2 12
app

(75)

When Eq. (75) is substituted into Eqs. (68) and (69), the local stress distribution under shear loading in the 1–2 plane in the RVE is
derived as

∑= − − −− ⎡⎣ − ⎤⎦=
∞ +

σ G
π n

n πx l
n πt l

n
l

πy γ4 ( 1)
2 1

cosh[(2 1) /(2 )]
cosh[(2 1) /(2 )]

cos 2 1
2

,yz
n

n
12
0

1

1

12
app

(76)

∑= − − −− ⎡⎣ − ⎤⎦=
∞ +

σ G
π n

n πx l
n πt l

n
l

πy γ4 ( 1)
2 1

sinh[(2 1) /(2 )]
cosh[(2 1) /(2 )]

sin 2 1
2

.zx
n

n
12
0

1

1

12
app

(77)

Thus, the local stress distribution is formulated for a ply that includes ply cracking under shear loading. As indicated in Eq. (67) and
Eqs. (75)–(77), displacement w and the local stress distribution in a ply are constant with respect to the z-axis. With shear loading, the
compatibility condition for the strain is satisfied; therefore, the proposed stress distribution is an exact solution. Damage parameter ξ
can be formulated using the three-dimensional stress field model for shear loading in the 1–2 plane. The average ply shear strain is
defined as ∫ ∫ ⎜ ⎟= ⎛⎝⎜ ⎛⎝ ⎞⎠ ⎞⎠⎟γ

lth
w x l dx dz1 , .

h t
12
ave

0 0 (78)

By substituting Eq. (75) into Eq. (78), the proportion of the average ply shear strain to the applied ply shear strain is derived as

∑= − −
=
∞γ

γ π t n
n πt ρ

ρ
16 1

(2 1)
tanh[(2 1) /2] .

k n

k12
ave

12
app 3

1
3 (79)

Using Eq. (79), shear stiffness reduction D ρ( )s associated with ply cracking subjected to shear loading can be defined as [21]

∑≡ − = − − −
=
∞

D ρ
γ
γ π t n

n πt ρ
ρ

( ) 1 1 16 1
(2 1)

tanh[(2 1) /2] .s
k n

k12
ave

12
app 3

1
3 (80)

Under the condition of low crack density (or the range in which damage parameter ω is small), we found that the damage value Ds in
Eq. (80) can be written with λ1 given by Eq. (38) as

= − ≈D
γ
γ λ

ω1 1
s

12
ave

12
app

1 (81)

Substituting Eq. (81) into Eq. (17), damage parameter ξ , which is a constant value, can be expressed using material parameter λ1.

=ξ
λ
1
1 (82)

When considering the surface crack, damage parameter ξ is also written as Eq. (82). According to Li et al. [21], the constant shear
damage parameter ξ depends on the material of ply and laminate lay-up configuration. Our derived shear damage parameter in Eq.
(82) depends on the material of ply only because our local stress field model did not consider the stress transfer at the interface of the
cracked ply.

When considering ply cracking, the effective stiffness matrix C can be calculated using Eqs. (4), (57), and (82). The effective
stiffness matrix C for surface cracking can be calculated using Eqs. (4), (58), and (82). Because damage parameter ω is formulated as
functions of ply crack density using the local stress field model, the stiffness matrix of the damaged ply is derived as a function of
crack density. In the next subsection, the stiffness matrix of damaged ply was employed in the three-dimensional laminate theory to
formulate the effective compliance and the effective thermal expansion coefficient of laminates with arbitrary configurations as a
function of ply crack density.
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2.3. Effective thermo-elastic properties of three-dimensional laminates with ply cracks

The effective thermo-elastic properties of three-dimensional laminates with ply cracks were formulated with the help of the three-
dimensional laminate theory [19,22,23]. To determine the thermo-elastic properties of laminate utilizing the three-dimensional
laminate theory, two-stage coordinate conversion is applied to the effective compliance and the thermal expansion coefficient of the
k-th ply ( = ⋯k N N1, 2, , ; is the total number of plies in the laminate) in the laminate. First, the compliance and the thermal
expansion coefficient of the ply in principal axis O-123 is converted into those of the k-th ply in the coordinate system of laminate O-
XYZ. We assume that the X-Y plane is parallel to the 1–2 plane of the ply and the Z-axis is in the same direction as the 3-axis. The
direction of a fiber is tilted at an angle θk between the 1- and X-axes, as indicated in Fig. 5.

The constitutive law of the k-th ply in the laminate coordinate system O-XYZ is described as= +ε S σ α T∆ ,k k k k (83)

where T∆ is the temperature change T-Tsf from the stress-free temperature Tsf to the testing temperature T. The effective compliance
Sk and the thermal expansion coefficient αk of the k-th ply with cracks in the laminate coordinate system O-XYZ are formulated as
(see Eqs. (106) and (108)= −−S R C Tθ θ( ) ( ),k k k k k1 (84)

=α R αθ( ) ,k k k 0 (85)

where superscript k denotes the components of the k-th ply, and the thermal expansion coefficient α0 of a ply in the coordinate system
of the principal axis of ply O-123 is defined as

=α α α α[ 0 0 0] .0
1
0

2
0

2
0 T

(86)

Here, α1
0 is the thermal expansion coefficient of an undamaged ply along the 1-axis, and α2

0 is that along the 2-axis. T θ( )k k and R θ( )k k

are the coordinate conversion matrices of the stress and strain indicated in Eqs. (A.4) and (A.5). Sk is calculated by substituting Eqs.
(4), (A.4), and (A.5) into Eq. (84). Second, the stress, strain, and thermal expansion coefficient of the k-th ply are converted into those
that are divided into in-plane parts and out-of-plane parts. The components of stress σk, strain εk, and thermal expansion coefficient
αk in the constitutive law of the k-th ply in Eq. (83) are defined as

=σ σ σ σ σ σ σ[ ] ,k
X
k

Y
k

Z
k

YZ
k

ZX
k

XY
k T

(87)

=ε ε ε ε γ γ γ[ ] ,k
X
k

Y
k

Z
k

YZ
k

ZX
k

XY
k T

(88)

=α α α α α[ 0 0 2 ] .k
X
k

Y
k

Z
k

XY
k T

(89)

The constitutive law of the stress σ k and strain ε k of the k-th ply that are divided into in-plane parts and out-of-plane parts can be
described as= +ε S σ α T∆ ,k k k k (90)

where

= ⎡⎣⎢ ⎤⎦⎥ = ⎡⎣⎢ ⎤⎦⎥ = ⎡⎣⎢ ⎤⎦⎥σ σ
σ

ε ε
ε

α α
α

, , ,k
k

k
k

k

k
k

k

k
I

O

I

O

I

O (91)

Fig. 5. In-plane coordinate conversion to the laminate coordinate system −O XYZ .
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= ⎡
⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥ = ⎡

⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥ = ⎡

⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥σ ε α

σ
σ

σ

ε
ε

γ

α
α
α

, ,
2

,k
X
k

Y
k

XY
k

k
X
k

Y
k

XY
k

k
X
k

Y
k

XY
k

I I I

(92)

= ⎡
⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥ = ⎡

⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥ = ⎡

⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥σ ε α

σ
σ
σ

ε
γ
γ

α
α
α

, , 2
2

.k
Z
k

ZX
k

YZ
k

k
Z
k

ZX
k

YZ
k

k
Z
k

ZX
k

YZ
k

O O O

(93)

Here, subscript I denotes the in-plane component, and O denotes the out-of-plane component. The relationship between Eqs. (87) and
(88) and Eq. (91) can be formulated as=σ Aσ ,k k (94)

=ε Aε ,k k (95)

where A is the conversion matrix in Eq. (B.3) (see Appendix B). Substituting Eqs. (94) and (95) into Eq. (83), the effective compliance
and thermal expansion coefficient for the constitutive law between the strain and stress in Eq. (90) can be expressed using conversion
matrix A.

= ⎡⎣⎢ ⎤⎦⎥ =S S S
S S

AS A
( )

k
k k

k k
kII IO

IO
T

OO

T

(96)

= ⎡⎣⎢ ⎤⎦⎥ =α α
α

Aαk
k

k
kI

O (97)

Finally, using the three-dimensional laminate theory (see Appendix C), the constitutive law of laminate with arbitrary lay-ups is
formulated as

= ⎡⎣⎢ ⎤⎦⎥ = + = ⎡⎣⎢ ⎤⎦⎥⎡⎣⎢ ⎤⎦⎥ + ⎡⎣⎢ ⎤⎦⎥ε ε
ε

S σ α S S
S S

σ
σ

α
α

T T∆
( )

∆ ,L
L

L
L L L

L L

L L

L

L

L

L
I

O

II IO

IO
T

OO

I

O

I

O (98)

where the stress and strain components are defined as

= ⎡⎣⎢ ⎤⎦⎥ = ⎡⎣⎢ ⎤⎦⎥ = ⎡⎣⎢ ⎤⎦⎥σ σ
σ

ε ε
ε

α α
α

, , ,L
L

L
L

L

L
L

L

L
I

O

I

O

I

O (99)

= ⎡
⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥ = ⎡

⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥ = ⎡

⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥σ ε α

σ
σ

σ

ε
ε

γ

α
α
α

, ,
2

,L
X
L

Y
L

XY
L

L
X
L

Y
L

XY
L

L
X
L

Y
L

XY
L

I I I

(100)

= ⎡
⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥ = ⎡

⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥ = ⎡

⎣
⎢⎢⎢

⎤
⎦
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σ
σ
σ
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L
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L
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L

L
Z
L

ZX
L

YZ
L

O O O

(101)

and the effective compliance S L and effective thermal expansion coefficient α L of laminate with arbitrary lay-ups can be obtained as
follows.

= = ⎡⎣⎢ ⎤⎦⎥S S S
S S

S[ ]
( )

,L
ij
L

L L

L L
II IO

IO
T

OO (102)

= = ⎡⎣⎢ ⎤⎦⎥α α
α

α[ ] ,L
i
L

L

L
I

O (103)

where

∑= ⎡⎣⎢ ⎤⎦⎥= − −
S St

t
( ) ,L

n

N
k

L

k
II

1
II

1
1

(104)

∑= ⎡⎣⎢ ⎤⎦⎥= −S S S St
t

( ) ,L L

n

N
k

L

k k
IO II

1
II

1
IO

(105)
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OO IO
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II
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T
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(106)

∑= ⎡⎣⎢ ⎤⎦⎥= −α S S αt
t

( ) ,L L

n

N
k

L

k k
I II

1
II

1
I

(107)

∑= + −− = −α S S α α S S αt
t

( ) ( ) [ ( ) ( ) ],L L L L

n

N
k

L

k k k k
O IO

T
II

1
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1
O IO

T
II

1
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(108)

where the ×6 6 effective compliance matrices S k and S L are divided into ×3 3 submatrices Sm
k and Sm

L ( =m II, IO, OO), as indicated
in Eqs. (96) and (102). Superscript L denotes the laminate components, and tL is laminate thickness. From the effective compliance=S S[ ]L

ij
L in Eq. (102) and the effective thermal expansion coefficient =α α[ ]L

i
L in Eq. (103) of laminate with ply cracks, the effective

thermo-elastic constants of the damaged laminate can be calculated as

= = =E
S

E
S

E
S

1 , 1 , 1 ,X
L

L Y
L

L Z
L

L
11 22 44 (109)

= − = − = −ν S
S

ν S
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ν S
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, , ,XY
L
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L XZ
L
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L YZ
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L

L
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11

24

22 (110)

= = =G
S

G
S

G
S

1 , 1 , 1 ,XY
L

L XZ
L

L YZ
L

L
33 55 66 (111)

= = =α α α α α α, , ,X
L L

Y
L L

Z
L L

1 2 4 (112)

= = =α α α α α α, , .XY
L L

XZ
L L

YZ
L L

3 5 6 (113)

Using Eqs. (109)–(113), changes in the thermo-elastic properties of the laminate due to change in ply crack density are obtained
analytically by determining the thermo-elastic properties of a ply and the laminated constitution, with no fitting parameter. The
proposed model for predicting the thermo-elastic properties of the laminate is an analytical model of ply cracking in general com-
posite laminates and exhibits favorable compatibility with laminate theory because it handles only damaged plies. The present model
is not limited to symmetric laminates, including free surface; it formulates damage parameters ω and ξ analytically and therefore
incurs little computational cost.

2.4. Steady-state cracking analysis

This subsection considers the energy-based model for steady-state ply cracking. Steady-state cracking is the fracture mode that a
ply crack will propagate over the full-width of the specimen under constant thermomechanical loading. It is also assumed that a new
ply crack propagates between two pre-existing cracks only in the k-th ply under constant applied laminate tensile stress, as indicated
in Fig. 6, when the ply cracks are equally spaced. Ply crack density is defined as =ρ l1/(2 ).

With these assumptions, the energy release rate Γk associated with ply cracking in a k-th ply under constant applied laminate
tensile stress σ L is

Fig. 6. Formation of a new crack between two pre-existing cracks in the k-th ply.
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= − −ρ U ρ U ρ
t

Γ ( ) ( /2) 2 ( ) ,k
k k

k (114)

where U ρ( )k is strain energy in a laminate with length l2 and laminate thickness tL. The strain energy U ρ( )k is given by

⎜ ⎟= − ⎛⎝ − ⎞⎠σ σ S σ σU ρ t
ρ

( )
2

( ) ,k L L L Lth T th

(115)

where σ th is the laminate stress to cancel out the thermal residual stress of the k-th ply. When the thermomechanical loading σ L of the
laminate is equal to the stress σ th, all stress components of k-th ply are zero. The stress σ th can be written as =σ σ σ[( ) ( ) ]th

I
th T

O
th T T.

Under this loading condition, σI
th and σO

th are calculated using the first row of Eqs. (C.1) and (C.2) and Eq. (C.3).= + − − −−σ S S σ S S σ α α T( ) ( ( ) ( )∆ ),L k k k L L k
I
th

II
1

II I IO IO O
th

I I (116)

=σ σ .k
O
th

O (117)

Substituting = =σ σ 0k k
I O into Eqs. (116) and (117), the stress σ th is formulated as

= ⎡⎣⎢ ⎤⎦⎥ = ⎡⎣⎢− − ⎤⎦⎥−
σ σ

σ
S α α T( ) ( )∆

0
.

L L k
th I

th

O
th

II
1

I I

(118)

The energy release rate Γk can be calculated substituting Eqs. (115) and (118) into Eq. (114). In this study, the uniaxial monotonic
tensile stress σ L,app of the laminate is considered as=σ σ[ 0 0 0 0 0]L L,app T (119)

Cracking analysis of the energy-based model for initiation of steady-state ply cracking in laminate is conducted as follows. It is
assumed that ply cracks form in just one ply. Using Eq. (114), the energy release rate Γk of each ply is calculated as a function of ply
crack density ρ at applied average laminate stress σ L,app. The critical ply crack density ρk

c and the critical applied laminate stress σc
L k,

when the maximum value of the energy release rate max (Γ )ρ k associated with ply cracking in a k-th ply is equal to the critical energy
release rate Γc are calculated. The ply having minimum cracking laminate stress σmin ( )k c

L k, is determined as steady-state cracking
stress.

3. Results and discussion

The damage parameter ω has upper limit because the effective stiffness C in Eq. (4) is formulated by assuming small damage.
Small damage refers to the condition in which the damage parameter ω is very small (i.e., ≪ω 12 ). It also means relatively low crack
density because the damage parameter ω is a monotone increasing function of crack density. First, the upper limit of ω was in-
vestigated in the case of various CFRP and GFRP plies. Then, the proposed model was validated by calculating the effective thermo-
elastic properties and steady-state cracking stress in comparison with experiment and finite-element analysis (FEA) results in previous
works on GFRP and CFRP laminates. The material properties of GFRP and CFRP unidirectional plies are listed in Table 1.

3.1. Maximum values of damage parameter and ply crack density

This subsection describes the upper limits of damage parameter ω and ply crack density. The effective stiffness C is valid while the
approximate expression of shear stiffness reduction Ds in Eq. (81) is equal to that calculated using Eqs. (57) and (80). These upper
limits can be obtained by comparing shear stiffness reduction Ds - damage parameter ω curve calculated using Eqs. (57) and (80) with
that estimated using Eq. (81) for low damage conditions. Fig. 7 plots shear stiffness reduction Ds as a function of damage parameter ω
for CFRP unidirectional ply listed in Table 1 calculated using Eqs. (57) and (80) or Eq. (81).

In the range of small ω, shear stiffness reduction Ds estimated using Eq. (81) is in good agreement with that calculated using Eqs.
(57) and (80). A similar trend was observed for GFRP unidirectional plies. We determine that the damage parameter ω when the
relative error of stiffness reduction Ds estimated using Eq. (81) to that calculated using Eqs. (57) and (80) is equal to 10 % is the upper
limit of damage parameter ω. The upper limit of the damage parameter is converted into the maximum value of normalized crack

Table 1
Material properties of GFRP and CFRP unidirectional plies.

Type E1
0 E2

0 ν12
0 ν23

0 G12
0 G23

0 α1
0 α2

0 Ply thickness

(GPa) (GPa) (GPa) (GPa) (/°C) (/°C) (mm)

GFRP-1 [19] 41.7 13 0.3 0.42 3.4 4.58 6.72 29.3 0.203× −10 6 × −10 6

GFRP-2 [24] 46 13 0.3 0.42 5 4.6 – – 0.5
GFRP-3 [7] 44.7 12.7 0.297 0.3 5.8 4.885 – – 0.125
CFRP [19] 142 9.85 0.3 0.46 4.48 3.37 – – 0.127
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density, which is the product of crack density and ply thickness using Eq. (57). The maximum values of damage parameter ωmax and
normalized crack density ρNmax for CFRP and GFRP plies in Table 1 are listed in Table 2.

The maximum value of damage parameter ω is approximately 0.57. For laminates that are used to calculate stiffness reduction,
maximum crack densities ρmax (ρNmax divided by ply thickness) are listed in Table 3.

The stiffness reduction of laminates with ply cracking was investigated in the range of maximum ply crack density ρmax listed in
Table 3.

3.2. Cross-ply laminate

This subsection discusses the elastic modulus and the crack opening displacement of a cross-ply laminate with damage due to ply
cracks or surface cracks in the °90 plies. Here [90/0]s GFRP laminate with surface cracks in the °90 plies was considered, and the
material properties of GFRP-1 listed in Table 1 were used. Fig. 8(a) and (b) compare the results for the Young’s modulus and Poisson’s
ratio of the laminate as a function of ply crack density as determined with the present model and previously published FEA results
[19].

The results of the present model agree well with the FEA results. The normalized elastic moduli as a function of ply crack density
of [0/90]s and [0 /90 ]s2 2 CFRP laminates with ply cracks in the °90 plies are plotted in Figs. 9 and 10.

The experiment results [25] are also presented in Figs. 9 and 10. Here, EX
L0 is the elastic modulus in the X-direction of the

undamaged laminate. The results obtained from the present model are in good agreement with the experiment results. Fig. 11 il-
lustrates the normalized Young’s modulus and normalized Poisson’s ratio as a function of the ply crack density of [0/90 /0 ]s8 1/2 GFRP
laminate with ply cracks in the °90 plies as calculated by the present model, using the material properties of GFRP-3 listed in Table 1.

Here, νXY
L0 is Poisson’s ratio in the −X Y plane of the undamaged laminate. The experiment results [7] are also presented in

Fig. 11. The results predicted by the present model were in good agreement with the experiment results. For cross-ply laminate, our
model does not have an advantage over the simplistic shear-lag model. However, damage parameters derived in this paper are
theoretical solutions under the assumption that the ply next to the cracked ply is rigid, and therefore the present model exhibits
favorable compatibility with laminate theory that can be used to calculate the effective thermo-elastic constants of laminates with
arbitrary lay-ups. Regarding this point, our model is superior to the shear-lag model that has difficulty solving the effective stiffness of
damaged laminates for arbitrary lay-ups.

The crack opening displacement for [0/90]s CFRP laminate is compared with the semi-analytical results of the National Physical
Laboratory (NPL) model calculated by McCartney et al. [26]. Using Eq. (47), the crack opening displacement vCOD can be calculated
as

Fig. 7. Shear stiffness reduction Ds as a function of damage parameter ω for CFRP ply.

Table 2
Maximum value of damage parameter ω and normalized crack density ρN .

Material ωmax ρNmax

CFRP 0.568 0.781
GFRP-1 0.569 0.788
GFRP-1 (surface crack) 0.569 0.394
GFRP-2 0.570 0.794
GFRP-3 0.577 0.832
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The following material properties are used in the calculation of the crack opening displacement: =E 144.781 GPa, =E 9.582 GPa,=G 4.78512 GPa, =ν 0.3112 , =ν 0.5523 , and =t2 0.25 mm. Crack opening displacement in °90 ply for CFRP [0/90]s laminate at crack
spacing =l2 4.0 mm and applied laminate stress =σ 0.2L,app GPa is plotted in Fig. 12.

The crack opening displacement calculated by the present model is less than that computed by the NPL model because our local
stress field models or damage parameters did not consider stress transfer at the interface. It is assumed that the plies adjacent to the
cracked ply are deformed uniformly in our model. Based on this assumption, the crack opening displacement in our model is less than
that in the NPL model, which considers stress transfer at the interface. Our model takes into account stress transfer by reconsidering
the boundary conditions of Laplace equations for v and w in Eqs. (46) and (75). This improvement of our model is our main future
work.

There are many stiffness reduction models for cross-ply laminates. Lee et al. [14] derived stiffness reductions in cross-ply

Table 3
Maximum crack density of laminates used to calculate stiffness reduction.

Lay-up Material ρmax (/mm)

[90/0]s GFRP-1 (surface crack) 1.94
[0/90]s CFRP 3.07
[0 /90 ]s2 2 CFRP 1.54−[55/ 55]N GFRP-1 3.88−[67.5/ 67.5]N GFRP-1 3.88− +[0/90/ 45/ 45]s GFRP-2 0.794
[0/90 /0 ]s8 1/2 GFRP-3 0.832±[0/ 70 /0 ]s4 1/2 GFRP-3 1.66

Fig. 8. (a) Young’s modulus and (b) Poisson’s ratio as a function of ply crack density for [90/0]s GFRP laminate with surface cracks.

Fig. 9. Normalized Young’s modulus as a function of ply crack density for [0/90]s CFRP laminate with ply cracks.
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laminates with ply cracks using an internal state variable approach. They formulated an internal state variable that describes the
damage state in composite materials using a stress field model of cross-ply laminates including ply cracks. However, this stress field
model does not satisfy the stress-free condition at the crack plane. Therefore, their model overestimated the stiffness of laminates. In
contrast, our local stress field models fulfilled the stress-free condition on the crack plane. One- or two-dimensional shear-lag analyses
[27] have been very useful for approximating the stress transfer at the interface by shear stress. However, shear-lag models must be
confined to symmetric laminates and symmetric damage, because they neglect the bending effect in their formulations. For example,

Fig. 10. Normalized Young’s modulus as a function of ply crack density for [0 /90 ]s2 2 CFRP laminate with ply cracks.

Fig. 11. (a) Normalized Young’s modulus and (b) normalized Poisson’s ratio as a function of ply crack density for [0/90 /0 ]s8 1/2 GFRP laminate with
ply cracks.

Fig. 12. Crack opening displacement in °90 ply for CFRP [0/90]s laminate at crack spacing =l2 4.0 mm and applied laminate stress =σ 0.2L,app GPa.
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Nairn and Hu [28] formulated [90 /0 ]m n s laminate including staggered ply cracks using variational mechanics analysis of the stresses.
For [90 /0 ]m n s laminates, these shear-lag analyses were inadequate because antisymmetric or staggered ply cracks were observed in
experiments. Although other variational models [4,28–30] (e.g., the Nairn and Hu model) can treat laminates including staggered ply
cracks, these models are limited to simplified laminate configurations. In contrast, our model can handle the staggered ply crack
pattern and can consider laminates with any configuration. Gudmundson and Zang [19] derived a general three-dimensional la-
minate model with ply cracks based on crack opening displacements, and their model can predict the average stress in each ply.
However, the local stress field in a ply is not included in their model, whereas our model can analytically predict the local stress field
model in °90 plies, as indicated in Eqs. (47)–(52).

3.3. Angle-ply laminate

This subsection discusses all the effective thermoelastic properties of angle-ply GFRP laminates of ±[ 55]N and ±[ 67.5]N that
include ply cracks in each ply. The material properties of GFRP-1 listed in Table 1 were used in the calculations, and Figs. 13 and 14
present the Young’s moduli, shear moduli, Poisson’s ratios, and thermal expansion coefficients for ±[ 55]N and ±[ 67.5]N laminates as
functions of ply crack density estimated using the present model or FEA results [19].

For ±[ 55]N and ±[ 67.5]N laminates, the behavior predicted by the present model is approximately equal to that of the FEA results.
Fig. 15 indicates the normalized Young’s modulus and normalized Poisson’s ratio as a function of crack density of ±[0/ 70 /0 ]s4 1/2 GFRP
laminate with ply cracking in ± °70 plies as calculated by the present model, using the material properties of GFRP-3 listed in Table 1.

The experiment results by Varna et al. [7] are also presented in Fig. 15. Their experiment results are much smaller than the results
of our model when crack density exceeds 0.2/mm. The stiffness of the experiment results declines drastically when crack density
increases from 0.2/mm to 0.4/mm. The formation of local delamination is cited as a possible cause of the difference between the
present model and the experiment results. Experiment observation [31] indicates that matrix crack-induced delamination or edge
delamination occurs in the angle-ply laminates. Furthermore, as pointed out in [7,8], stiffness reduction for the ±θ[0/ /0 ]s4 1/2 GFRP
angle-ply laminate is due to ply cracking as well as shear-induced damage depending on the angle θ.

For angle-ply laminates, Vinogradov and Hashin [6] modeled θ θ[ / ]m n
(1) (2) laminates containing ply cracks in the middle ply using the

Fig. 13. (a) Young’s modulus, (b) shear modulus, (c) Poisson’s ratio, and (d) thermal expansion coefficient as a function of ply crack density for−[55/ 55]N GFRP laminate with ply cracks.
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principle of minimum complementary energy. Their model underestimated the stiffness of θ[0 / ]m n s angle-ply laminates in comparison
with experiment results [32], because the principle of minimum complementary energy provided a lower bound for the stiffness of a
cracked angle-ply. Gudmundson and Zang [19] and Lundmark and Varna [33–35] formulated the effective properties of laminates
with ply cracks using crack opening displacement-based methods, which describe the elastic response changes caused by ply cracks in
a medium by considering the crack opening displacements of individual cracks. In Gudmundson and Zang’s model, crack opening
displacement was calculated by fitting the homogeneous isotropic medium with cracks under the action of uniform tractions on crack

Fig. 14. (a) Young’s modulus, (b) shear modulus, (c) Poisson’s ratio, and (d) thermal expansion coefficient as a function of ply crack density for−[67.5/ 67.5]N GFRP laminate with ply cracks.

Fig. 15. (a) Normalized Young’s modulus and (b) Normalized Poisson’s ratio as a function of ply crack density for ±[0/ 70 /0 ]s4 1/2 GFRP laminate.
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surfaces given by Benthem and Koiter [36] and Tada et al. [37]. In the model formulated by Lundmark and Varna, crack opening
displacement was computed by fitting empirical results with finite-element calculations. In contrast, our stress field model analy-
tically derived the crack opening displacement in the transversely isotropic elastic body from the displacement.

3.4. Quasi-isotropic laminate

The quasi-isotropic − +[0/90/ 45/ 45]s GFRP laminate was analyzed to compare the results of our model with the experiment results
obtained by Tong et al. [38], using the material properties of GFRP-2 listed in Table 1. We assume that all plies except °0 plies have
the same damage, because the crack density in ± °45 plies is not available from the experiment of Tong et al. With this assumption,
the effective stiffness calculated by the present model is the lower bound because cracks in ± °45 plies do not propagate perfectly
through the laminate width, and cracks in ± °45 initiate later than in °90 and contribute little to total stiffness reduction. Fig. 16 plots
the normalized Young’s modulus and normalized Poisson’s ratio for the laminate obtained from the proposed model in comparison
with the experiment results.

Although the contribution of ± °45 cracks to laminate stiffness reduction is small, the effective Young’s modulus of laminate
obtained by our model is in good agreement with those of the experimental results. Fig. 16 is also plotted the result of present model
without ± °45 cracks. The present model without ± °45 cracks is slightly higher than the experimental results at the range of crack
density from 0/mm to 0.7/mm although the ± °45 cracks did not cause at this range [38]. This reason is possibly due to local
delamination at the crack tips.

A stiffness reduction model of quasi-isotropic laminates must be formulated, because most laminates used in real structures are
quasi-isotropic. However, few analytical models enable such predictions [10,11,17]. Tay and Lim [17] suggested a stiffness reduction
model of general laminates including ply cracks, using internal state variables that were fitted by finite-element calculation.
McCartney [11] derived the stiffness reduction and progressive ply crack formation of general symmetric laminates with ply cracks
using a generalized plane strain analysis and the homogenization technique, and considering the stress transfer at the interfaces of
neighboring plies. However, this model could not be applied to asymmetric laminates, whereas the proposed model can predict the
stiffness reduction of laminates with arbitrary configurations.

3.5. Steady-state cracking stress of cross-ply laminates

Steady-state cracking stress of cross-ply laminate estimated by the energy-based model described in Section 2.4 is compared with
analytical results in previous studies. Here, [0/90 /0]m ( =m 1, 2, 3, 4) cross-ply laminate of IM7/5250 is analyzed; properties of the
ply are listed in Table 4.

Fig. 17 plots steady-state cracking stress assuming steady-state cracking as a function of thickness of °90 plies per thickness of °0
plies.

For comparison, the analytical results using Gudmundson and Zang’s [19] model’s effective compliance matrix and the energy-
based model (Eq. (114)) in this study are also plotted in Fig. 17. Furthermore, Fig. 17 includes the semi-analytical results of the NPL
model [39] and the Large Radius Axisymmetric Damage Model (LRAM) [39], as well as the analytical results of Dvorak and Laws
[40]. The present model is in quantitatively good agreement with the analytical results of the LRAM and NPL models [26,41]. Both
semi-analytical models consider the stress transfer of neighboring ply caused by ply cracking. The LRAM model was developed by
Schoeppner and Pagano [42] to approximate the thermoelastic stress field and energy release rate in flat laminates with ply cracks
and delaminations. When the radius-to-laminate thickness ratio is equal to 100,000, the large radius axisymmetric damage model is
reasonably similar to the stress fields and stiffness reduction of flat laminates estimated by the NPL model, which is considered to be
the most accurate generalized plane strain model. Our damage mechanics model is formulated explicitly and is highly simplified,

Fig. 16. (a) Normalized Young’s modulus and (b) normalized Poisson’s ratio as a function of ply crack density for − +[0/90/ 45/ 45]s GFRP laminate
with ply cracks in °90 and + °45 plies.
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whereas the LRAM and NPL models should solve the simultaneous differential equation numerically. The steady-state analytical
results of Gudmundson and Zang’s model and those of Dvorak and Laws’s model are lower than the results of the present model, the
LRAM, and the NPL model. Gudmundson and Zang’s model and Dvorak and Laws’s model assume that a cracked ply is identical to the
infinite cracked medium. This assumption does not work well, because cracked ply in laminate is significantly constrained by ad-
jacent plies. Therefore, the crack opening displacements of those models are higher than those of the other three models described
here. In this study, we validated the present steady-state cracking analysis model by comparing it to semi-analytical and analytical
results for cross-ply laminates, because there is an abundance of models for cross-ply laminate. The present model can be used to
calculate crack density evolution for laminates with any lay-up. This is our future work, and we plan to publish the cracking analysis
of laminate with any lay-up in our next paper.

4. Conclusions

In this study, the effective compliance and elastic constants of laminates were formulated based on a CDM approach and laminate
theory, in an effort to predict the thermoelastic properties of laminates of arbitrary configurations as a function of ply crack density.
The damage parameters ω and ξ were expressed as functions of ply crack density based on analytically formulated local stress field
models subjected to tensile loading and shear loading. The model proposed in this study considers the effect of damage due to ply
cracks (or surface cracks) based on only the thermomechanical properties of the ply and the laminate constitution. This model
quantitatively reproduced FEA and experiment results for the thermomechanical properties of cross-ply, angle-ply, and quasi-iso-
tropic laminates including ply cracks. Following the approach of energy-based steady-state cracking analysis, the laminate crack
initiation stress for cross-ply is calculated and compared with analytical results in previous studies. Our model is quantitatively in
good agreement with the semi-analytical results of the large radius axisymmetric damage model by Pagano and the NPL model by
McCartney.

Table 4
Material properties of IM7/5250-4 [39].

Longitudinal Young’s modulus E1
0 165.475 GPa

Transverse Young’s modulus E2
0 10.342 GPa

In-plane Poisson’s ratio ν12
0 0.31

Out-of-plane Poisson’s ratio ν23
0 0.56

In-plane shear modulus G12
0 5.7922 GPa

Out-of-plane shear modulus G23
0 3.3147 GPa

Longitudinal thermal expansion coefficient α1
0 × −0.45 10 6 /°C

Transverse thermal expansion coefficient α2
0 × −24.66 10 6 /°C

Stress-free temperature Tsf 180 °C
Ambient testing temperature T 24 °C
Ply thickness 0.127mm
Critical energy release Rate Γc 225 J/m2

Fig. 17. Laminate crack initiation stress assuming steady-state cracking as a function of thickness of 90° plies per thickness of 0° plies.
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Appendix A. Coordinate conversion to the laminate coordinate system

The constitutive law of the principal axis of ply O-123 depicted in Fig. 1 is converted to that of the principal axis of laminate O-
XYZ in Fig. 5. The constitutive law of the ply with cracks in the principal axis O-123 is described as= +−ε C σ α T∆ ,app 1 app 0 (A.1)

where T∆ is the temperature change T-Tsf from the stress-free temperature Tsf to the testing temperature T. The relationship between
the stress σapp and strain εapp in the coordinate O-123 and the stress σk and strain εk in the coordinate O-XYZ can be expressed as=σ T σθ( ) ,k k k app (A.2)

=ε R εθ( ) ,k k k app (A.3)

where T θ( )k k and R θ( )k k are the coordinate conversion matrices of the stress and strain, described as
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The inverse matrices of T θ( )k k and R θ( )k k are simply given by= −−T Tθ θ{ ( )} ( ),k k k k1 (A.6)

= −−R Rθ θ{ ( )} ( ).k k k k1 (A.7)

Substituting Eqs. (A.2), (A.3), and (A.6) into Eq. (A.1), the constitutive law of the k-th ply with ply cracks in the principal axis of
laminate O-XYZ is given by= +ε S σ α T∆ ,k k k k (A.8)

where the effective compliance matrix Sk and the thermal expansion coefficient αk of the k-th ply in the coordinate system O-XYZ are
indicated in Eqs. (84) and (85).

Appendix B. Formulation of the conversion matrix A

The stress and strain of the k-th ply in Eqs. (87) and (88) are converted into thoses in Eq. (91) that are divided into in-plane parts
and out-of-plane parts using the conversion matrix A, described as=σ Aσ ,k k (B.1)

=ε Aε .k k (B.2)

The conversion matrix A can be formulated as

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
⎡
⎣
⎢⎢⎢⎢⎢

⎤
⎦
⎥⎥⎥⎥⎥

A P P4, 6 3, 6

1 0 0 0 0 0
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,

(B.3)

where ×6 6 matrix =P i j P( , ) [ ]kl is the elementary matrix that is interchanged in two rows (or two columns) i and j. Pkl is defined as
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follows:

= ⎧
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= ≠ ≠= == =P
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The nature of elementary matrix P i j( , ) is=−P Pi j i j( , ) ( , ),1 (B.5)=P Pi j i j( , ) ( , ).T (B.6)

Using Eqs. (B.5) and (B.6), the inverse matrix of A can be calculated as=−A A .1 T (B.7)

Substituting Eqs. (B.1), (B.2), and (B.7) into Eq. (A.8), the constitutive law between the stress and strain in Eq. (91) is expressed as= +ε S σ α T∆ ,k k k k (B.8)

where the effective compliance matrix S k and the thermal expansion coefficient α k of the k-th ply for σ k and ε k are indicated in Eqs.
(96) and (97). The compliance matrix Sk of the orthotropic plate is described as
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Substituting Eq. (B.9) into Eq. (96), the compliance matrix S k can be expressed as
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Appendix C. Formulation of the three-dimensional laminate theory

The three-dimensional laminate theory is utilized to formulate the thermoelastic properties of the composite laminate. The
constitutive law of the laminate for average stress and strain in Eq. (99) is expressed as
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and the constitutive law of the k-th ply for average stress and strain in Eq. (91) is given by
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where superscript L denotes the laminate component and k denotes the k-th ply component. From the compatibility and equilibrium
conditions in the laminate, the following relationships must be satisfied.= =ε ε σ σ,k L k L

I I O O (C.3)

The laminate average stresses and strains are defined as
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Here, tL is laminate thickness, and tk is k-th ply thickness. From the first row of Eqs. (C.2) and (C.3), in-plane average stress of k-th ply
σ k

I can be obtained as= − −−σ S ε S σ α T( ) ( ∆ ).k k L k L k
I II

1
I IO O I (C.7)

Substituting Eq. (C.7) into the first row of Eq. (C.4), the in-plane average laminate strain ε L
I is expressed as
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By comparing Eq. (C.8) and the first row of Eq. (C.1), the compliance submatrices of the laminate S L
II and S L

IO and in-plane thermal
expansion coefficient of laminate α L

I are obtained as Eqs. (104), (105), and (107). In terms of the out-of-plane components, from the
second row of Eqs. (C.2) and (C.3), the out-of-plane average strain of k-th ply ε L

O is formulated as= + +ε S σ S σ α T( ) ∆ .k k k k L k
O IO

T
I OO O O (C.9)

Inserting Eq. (C.9) into the second row of Eq. (C.5) and using Eq. (C.7) and the first row of Eq. (C.1), the out-of-plane average strain of
laminate can be expressed as

∑=
+ − ++ − +
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−
−
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S S S S S σ
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The following relationship can be obtained using Eq. (105).∑ == − −S S S St
t

( ) ( ) ( ) ( )
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1

(C.11)

Substituting Eq. (C.11) into Eq. (C.10), the out-of-plane average strain of laminate is rewritten as

∑
∑

=
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By comparing Eq. (C.12) and the second row of Eq. (C.1), the compliance submatrix of the laminate S L
OO and out-of-plane thermal

expansion coefficient of laminate α L
O are obtained as Eqs. (106) and (108).
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