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ABSTRACT: A study workflow that utilizes several data science methods to apply on polymer materials databases is introduced to
reveal correlations among their properties, structural information, and molecular descriptors. The data science methods used in this
pipeline include the unsupervised machine learning (ML) method of self-organizing mapping (SOM) and the polymer molecular
descriptor generator, both of which have been tailored to fit the polymer materials study. To demonstrate how this pipeline can be
applied in this context, we used it on an organic photovoltaic (OPV) donor polymer database to investigate which properties or
structural factors positively correlate with the power conversion efficiency (PCE) of OPV materials. This led us to discover that
among the studied 8 properties and 11 molecular descriptors, only the photon energy loss (Eloss) and the number of fluorine atoms
(nF) show strong positive correlations with PCE values, which is consistent with other verified studies. We also discovered that
research trends can also be statistically visualized using our method. In our case study, we found that most of the studied OPV donor
materials in the database have branched side chains and typically 7−12 non-hydrogen atoms, and high PCE materials usually have
6−9 aromatics rings as well. These results proved that the data science pipeline proposed in this study provides a fast and effective
way to obtain research insights for polymer materials.

1. INTRODUCTION
We are at a time when data science is becoming applicable to
almost any research fields. There are two major reasons for this:
one, data science and computational developments have
progressed greatly in the past years to the point where many
tools and algorithms developed for other research fields have
become very powerful, adaptable, and more easily accessible;
two, the development of the research instrumentation makes
science research more effective and efficient in generating data,
and the size of the data in almost all research fields is increasing
rapidly. New data science approaches now lead to many

breakthroughs in scientific research, including in the field of
materials research.
In particular, as it comes to polymer design research,

molecular fingerprints and descriptors, such as molecular
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electronegativity, molecular coordinates, number of atoms, etc.,
can be used as inputs to machine learning (ML) models to
screen for well-matched polymer materials or generating
polymer structures that can lead to improved performance.
TheMLmethods used in such research can be classified into two
categories, supervised ML or unsupervised ML.
In supervised ML, several intriguing researches1−4 have been

accomplished using the random forest (RF) classifier to generate
the classification of polymers performance based on their
molecular information. This pipeline is very successful in
expediting the screening process for polymer design, synthesis,
and characterization, but usually requires significant human
efforts in conducting data training.
In unsupervised ML, recent progress has focused on utilizing

dimension reduction methods such as principle component
analysis (PCA),5 t-distributed stochastic neighbor embedding
(t-SNE),6 and self-organizing map (SOM)7 to analyze
correlation across properties. With materials’ properties having
different levels of correlation and fundamental connection, their
datasets naturally have a high dimensionality. Among the
dimension reduction methods mentioned, t-SNE is popular for
its nonlinear dimension reduction and visual presentation of
high dimensional data in a low dimensional space. It was used in
protein study to classify proteins based on simulation calculated
properties,9 and in another study, previously uncharted band
structure space for thousands of materials are clustered based on
the DFT calculated energy dispersion data.10 Although limited
publications can be found focusing on demonstrating the results
of PCA analysis, this method is widely used as a reference in
confirming the correlation between structure and particular
properties mathematically.5,8−10 However, most research found
that PCA can cause unavoidable loss of physical meaning,
whereas t-SNE and SOM are more favorable to study high-
dimensional data for human-intuitive visualizations. In compar-
ison with t-SNE, although relatively new to the community,
SOM is more efficient in unraveling nonlinear and unordered
data in real cases.11 Therefore, it is more suitable for material
science research to find correlations among different properties,
or correlations between properties and structure of the
materials. A detailed explanation of how to use SOM in
materials science can be found in our earlier publication12 in
which we were able to cluster and discover correlations of
properties among 20 properties simultaneously. None of these
researches can be conducted manually without efficient data
science methods.
Even though data science methods can efficiently classify

hundreds, or even thousands materials based on their properties,
not so many functions and methods have been developed to
discover correlation patterns between particular properties and
structure of the materials, particularly for the polymer materials,
and the application of SOM on polymer study has been limited
so far. In this study we will demonstrate how correlation among
structure and properties of polymer can be discovered by
introducing a new data science workflow which can be used to
improve the efficiency of polymer design.
1.1. SOM and the Challenge of Its Application in

Polymer Informatics.One of the difficulties and challenges in
applying dimension reduction to polymer systems stems from
the fact that there are many more distinctive factors differ-
entiating one polymer structure from another than in inorganic
materials.13 In polymer informatics, these distinctive factors of
the structures, or the mathematical and logical representations
of the molecular configuration are called “molecular descriptors”

and include mainly three categories of information about a
polymer: (a) chemical, such as different chemical elements or
different functional groups existing inside of the polymer, (b)
geometrical, such as linear or ring structured, and (c) different
types of branching for the side chains. The number of molecular
descriptors of polymers can be in the thousands,14 and the
properties or performances of a polymer can change with any of
them. Moreover, one molecular descriptor may impact the
properties differently when the other molecular descriptors
change. If all these molecular descriptors are included in the
training set of SOM, this extremely high dimensionality training
set will cause all materials to appear sparse and dissimilar in the
high dimensional space, making “clustering and organization”
almost impossible. This problem is usually described as the
“curse of dimensionality”.15

To avoid this problem, we adopted the “information
projection” function of the SOM that was developed and
described in our earlier study.12 In that study, this function
helped us by projecting categorical data onto the SOM cluster
map to find the correlation between measured properties and
categories of materials. In this study, we project the numerical
data, including properties and molecular descriptors, onto the
cluster map. This helps us effectively and efficiently identify
which geometrical or chemical structure will likely give us the
most desired property. This information projection process is
illustrated in Figure 1.

Molecular descriptors or geometrical and chemical informa-
tion on monomers can be extracted by molecular descriptor
generator from SMILES (Simplified Molecular-Input Line-
Entry System), a widely used cheminformatics tool to describe
molecular structure in a one-line short ASCII string.16 It was
initiated in the 1980s17,18 and then commonly used in chemical
informatics studies.1,19,20 However, for experimental researchers
or researchers who do not base their research on computational
tools, the usage of SMILES is quite limited. Without a proper
tool to help us organize and use information from SMILES, it
cannot be used directly. Molecular descriptors can be expressed
from SMILES by using the Mordred Descriptor Generator
(MDG).21 MDG is an open-source python library based on the
cheminformatics toolkit Rdkit.22 When compared to other
available open-source software, such as BlueDesc,23 PyPDI,24

Figure 1. Molecular descriptors used for this project are projected on
the cluster map by color coding the dots, which each correspond to a
unique polymer ID. This enables visualization of their distributions on
that map. Different colors correspond to various ranges of normalized
values for the projected property.
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Rcpi,25 Dragon,26 etc., it has advantages of being able to generate
up to 1825 molecular descriptors and to support parallel
computation, web interface, and command-line interface. The
workflow adopted in this project is shown in Figure 2, where we
combine both SOM and molecular descriptor generators to
study OPV materials.
1.2. Database and Experimental Variables. To demon-

strate how this study pipeline was utilized, we applied our
methods to a data set of donor materials in the organic
photovoltaic (OPV) devices with fullerene acceptor. Database
used in the present study was built by Nagasawa et al.,1 and the
objective was to understand how the properties were correlated
with each other, or to the molecular descriptors.
In the OPV devices, measurements commonly taken to

accurately characterize functionality of the devices and materials
include short-circuit current density (Jsc), open-circuit voltage
(Voc), fill factor (FF), various means of molecular weights (e.g.,
weight-averaged one, Mw, and number-averaged one, Mn),
spectral absorption, internal and external quantum efficiencies
(IQE and EQE),1 and others. Performance of the devices is
generally evaluated by the power conversion efficiency (PCE),27

of which values were used as the main indicator of the
performance of the OPV devices.
The data set used in this study contains a total of 1203

different types of organic photovoltaic polymers, of which
experimental data were manually collected from more than 500
papers. Several examples of the p-type polymers in the data set
are illustrated in Figure 3. This data set contains SMILES and 11
properties for each of these polymers, including the Voc, Jsc, FF,
molecular weights (Mw, Mn, and the weight of monomer unit),
polydispersity index (PDI), principal energy levels (highest

occupied molecular orbital, HOMO, and lowest unoccupied
molecular orbital, LUMO), optical bandgap (Eg), photon energy
loss (Eloss), and PCE.
In this paper, we investigated the correlation between 11

molecular descriptors and the PCE performance of the material
in our data set. The selected 11 molecular descriptors are the
existence of 4 elements (nitrogen (N), oxygen (O), sulfur (S),
fluorine (F)), the number of side chains (nChain), the number
of all aromatic rings (naRing), the number of five-membered
aromatic rings (n5aRing), including pyrrole, pyridine, furan and
thiophene, the number of six-membered aromatic rings
(n6aRing), including cyclohexane and benzene, the ratio
between nChain and naRing (nChain/naRing), and whether
the material contains branched side chains and/or linear side
chains. These are geometrical and chemical features that are
possibly associated with PCE values of the device in reported
studies.11,28,29

In this project we do not discuss 3D molecular descriptors
from SMILES since they are mostly related to the molecular
conformation and electronegativity. For example, 3D descrip-
tors provided by MDG include radius and diameter of the entire
molecule, fractional charge partial negative surface area,
geometric shape index, etc. These descriptors are difficult to
analyze since many factors have convoluted impacts on the
outputs. We are focusing on investigating 2D descriptors in this
work.
We also studied other material properties that could be

correlated to the PCE values, including Eg and Eloss. Here, Eloss, as
expressed in eq 1,30 is preliminarily determined by variations in
energetic offset between the Eg and Voc with values ranging
between 0.6 and 1.0 eV. Several theoretical and empirical studies

Figure 2.Data processing pipeline, including input, tools, and output. Information is projected on the cluster map to visualize the property−structure
relationship after normalization. Heatmaps are used to visualize property−property correlations and are produced directly from SOM training.

Figure 3. Samples of p-type donors’monomer structures in the data set. A total of 1203 polymers are included, which are the studied donor polymer in
a fullerene acceptor OPV system.
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have demonstrated the importance of reducing Eloss to reach
maximum possible Voc for devices.

1

E E qVloss g oc= − (1)

where q is the elementary charge.
In this paper, we constructed a research workflow that

includes several data science methods to demonstrate how the
data science methods can be utilized in searching for correlation
between the structural or chemical descriptors and the polymer
properties.
In the following sections, we describe data feature selection

for ML, SOM training, and visualization of the data set, so that
clustering of the materials reflects the PCE performance of the
materials. We then describe the method used to extract
molecular descriptors from SMILES and eventually discuss
how the extractedmolecular descriptors and other properties are
projected to the 2D cluster maps in order to study the
correlations between these information and material perform-
ances. Here, we point out that, even though very specific systems
are studied in this case study, the method we describe in this
study can be used in other data sets, such as nonfullerene
acceptor systems that are attracting more research interests
lately.31−34

2. METHODS
2.1. Feature Selection for SOM. InML, feature selection is

a critical step where features, or properties, are chosen to be used
as input. In our study, the design matrix for model training is
formed by 5 dominant features, Jsc, Voc, FF, Mw, and HOMO.
The first three, Jsc, Voc, and FF, are direct contributors to the
PCE values, whereas Mw and HOMO are chosen for their
promising correlations with PCE. It has been known that Mw
tends to give enhanced PCE for the same molecular structure
and backbone and also creates a more fibrous structure of the
polymer domain in a BHJ film.1,35 In addition, higherMw with a
narrow distribution leads to a higher degree of crystallinity.36−38

HOMO is chosen because deepening of HOMO results in an
increased Voc. With this combination, relative distances between
the data points were preserved by ensuring the best preservation
of the topology, therefore yielding better results.7,11 More
importantly, the properties we have chosen in the feature
selection gave a good clustering of the materials in the PCE
values. This will be discussed in the next section.
2.2. Training and Visualization by SOM. Both the data

visualization and training come from an updated version of a
python package called tfprop_sompy by Kikugawa and
Nishimura39 based on the Python package SOMPY.40 The
data processing and visualization works are done using multiple
Python packages, including Pandas, Numpy, Scikit-learn, and
Matplotlib.
Output of the SOM model consists of a set of 2D arrays

including cluster map, heat maps, and U-matrix map. Among
these, we focus on the visualization of cluster map and heatmaps,
as described in the project workflow in Figure 2. The U-matrix
maps were used only to benchmark the results of the clustering
map to prove that our clustering map does represent the
closeness of the studied properties of the polymer materials. The
cluster map provides where the materials are located on the 2D
array map, whereas the heatmaps are used to visualize the
pattern of the properties’ distribution in the design matrix. The
PCE values are also projected from the database to confirm that
our clustering map does put materials with high PCE together
and, therefore, reflects the performance of the materials. The

results of the PCE cluster map are shown in Figure 4, in which
the high PCE value polymers are well clustered into several

regions on the right side of the cluster map, and the low PCE
value polymers in general are accumulated on the left side. In our
polymer−fullerene OPV database, the PCE value ranges from
0.01% to 10.50%. To highlight the statistical significance of our
method, we outline the polymers with a top 40% PCE value from
our data set (PCE value higher than 6.3%) and focus our analysis
on the correlation between the other factors with these
polymers. For our study, we call these polymers high-PCE
polymers.
In this study we used a map size of 80× 80, cluster numbers of

4 to incorporates all 1203 samples, and 5 selected features and
generated the cluster map that no node accommodates more
than one data point. With these parameters, the topographic
error and quantization error of the cluster maps is minimized to
0.0116376 and 0.128816, respectively. SOM training was made
on a local laptop with a 1.8 GHz eighth generation Intel Core
quad-core processors of Intel (R) Core(TM) i7-8550U in 447.5
s.

2.3. Extraction of Information from SMILES.The python
library Mordred Descriptor Generator includes most of the
molecular descriptors that are studied in this project.41 In our
case study, a 1203 × 1825 matrix table was generated
automatically with the numerical counts of every descriptor
for each material from the 1203 instances using SMILES as the
input file. The 11 molecular descriptors that are of interest were
then selectedmanually for the information projection step of our
workflow.
Other geometrical information of interest, such as the

presence of a branched side chain or a linear side chain, were
extracted by using data processing with some parsing rules
directly from the SMILES ASCII code. All the data and the
algorithm can be found at the GitHub address: https://github.
com/DataScienceUWMSE/SOM_OPV.

2.4. Information Projection. The most important step in
our method is to project information on the cluster maps to
reveal correlations between structural information and perform-

Figure 4. Projected PCE value map. The PCE values from the original
data set are divided into 5 regions in different colors by min−max
normalization. PCE boundary regions (red and blue line) are drawn out
on the basis of the data distribution. The red line indicates the top 40%
of the PCE values, and the blue line indicates the lowest 20% of the PCE
value.
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ance of the materials. Since the cluster map has already grouped
on the basis of the properties of interest (PCE performance in
our study case), we are able to visually observe the distribution
of the projected information. If high values of the projected
information coincide well with high values of the properties
presented in the cluster map, then a positive correlation can be
concluded; otherwise, there is no correlation or a negative
correlation between the projected information and the PCE
value.
Through our study, we sometimes find that projection of the

numerical data directly on the maps can be difficult to interpret.
In the projection function, different numerical values are
projected to the cluster map using different colors. If the range
of values of the projected data is large, too many colors are used,
which require users to differentiate colors that are very similar to
each other or only have subtle gradient changes. Thus, feature
scaling is required on all numerical data to make interpretation
easier. In this case we applied the min−max normalization
technique:42

x
x x

x x

x k

k

min( )
max( ) min( )

label round( 0.499)

label 0

i

i

i

′ = −
−

= ′ × +
≥ ≥ (2)

For every numerical data point of the property x, we compute a
normalized data point x′ and a label corresponding to it. k is the
number of classes we want the property to be divided into, and
0.499 is a constant value to round up label values in order to
make distribution of the results more uniform. The calculated
label after rounding should always range between 0 and k. Then,
a dot that represents each material is colored on the basis of the
label corresponding to a range of the projected value this
material belongs to. As shown in the illustration of the projection
in Figure 1, different colors correspond to different ranges of
normalized values for the projected property.
In the next section we will first discuss the results and

conclusion we can obtain from the heat maps and then discuss
the results from projecting the molecular descriptors onto the
cluster map.

3. RESULTS AND DISCUSSION

3.1. Heat Maps. Figure 5 presents heat maps of the
properties of Voc, Jsc, FF,Mw, and −HOMO, from which we can
visually see how these property values are distributed on the
cluster map. It is apparent that there is a trade-off effect between
Jsc and Voc on their heatmaps, whereas majority of the high PCE
materials has a low-lying HOMO or medium HOMO. This
could be rationalized by the fact that lower-lying HOMO levels
contributes to largerVoc in BHJ devices.

43 Jsc and FF have similar

Figure 5.Heatmap for features, including (a) Voc, (b) Jsc, (c) FF, (d)Mw, and (e) −HOMO. PCE boundaries are shown on the maps using the black
bold lines.
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patterns of distribution, indicating a positive correlation
between them.
Comparing the PCE values projected on the cluster map in

Figure 4 with the other heat maps, we find that some materials
with high molecular weight have PCE ranging between 4.21%
and 6.30%, but in general, these high molecular weight polymers
are not within the high PCE regions. This observation is not
consistent with the general consensus that high-performance
OPV materials have high MW due to lower density of
recombination centers (persistent radical defects revealed by
EPR spectroscopy) and better photoactive layer morphology in
the samples.44 This may be an indication that molecular weight
has competing contributions in getting high PCE values as some
other molecular descriptors. This does not exclude the
possibility that molecular weight can play an important role in
achieving high PCE. Some research showed that even though
the bandgap or energy levels might not significantly change, the

absorption profile and the absorption intensity can be
significantly influenced by the molecular weight.45−47

The heat maps provide visualizations displaying compressed
information on the original high-dimensional data on an
organized 2D mesh. The x axis and y axis of the 2D mesh,
which are the same in the heat maps and in the cluster map, are
unitless and without any physical meaning. They provide a
distribution of the materials that are studied in the ML learning.
The materials with the same ID locate at the exact same position
on all heat maps and cluster map. The cluster map presents how
materials cluster on the 2D mesh, and heatmaps relate their
properties to it; hence, correlations among properties can be
directly observed. This is a human intuitive way to observe high-
dimensional features while their topology is relatively well-
preserved. This has been demonstrated in Qian et al.’s work.12

3.2. Projection Maps. In order to study the correlation
between the PCE performance and other factors, such as

Figure 6. Information projected cluster map of (a) Eloss and (b) Eg. (c)Monomer structures generated frommonomer SMILES of materials marked by
triangles in (a) and (b) with high PCE, low Eloss, and low Eg. (d) Monomer structures marked by rectangles in (a) and (b) with high PCE, high Eg, and
high Eloss. High PCE region are shown on the cluster maps in red, and low PCE region, in blue lines.
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chemical information, and geometrical information on the
polymers, we now utilize the projection function developed in
SOM on the cluster map. All the projection maps have a high
PCE region outlined so that the correlation can be identified
visually.
3.2.1. Projection of Eg and Eloss. First, we study the

correlation of PCE values with Eg and Eloss. Note that these
two properties are included in the data set but not used in the
training set. Figure 6a shows the distribution of Eloss across the
cluster map. It is found that materials with high Eloss values tend
to be aggregated around the low-PCE regions, while the very few
materials with low Eloss (as displayed in Figure 6c) all exist in the
high PCE value region of the map. This observation is consistent
with recent studies of the OPV materials48−50 that a low Eloss
(less than 0.5 eV) can improve the PCE value of the material by
as much as 15% even though most materials typically hold Eloss
values between 0.7 and 1 eV. Figure 6c lists the materials with a
low bandgap and low energy loss. Using the unique ID of each
polymer in SOM input, we can easily track these polymers to its
original source publications.51−53

There are also a few high Eloss materials in the high-PCE
region, which we mark with rectangles in Figure 6a. By
comparing Eloss and Eg projected cluster maps (i.e., Figure
6a,b), we find that these materials also have wide bandgap values
(high Eg). According to eq 1, high Eloss and high Eg might result
in high Voc, which increases the PCE value. By comparing with
the heatmap of Voc in Figure 5, we confirmed that all these low
Eloss and wide-bandgap OPV materials (WBG) listed in Figure
6d have high Voc values. It brings to light that for high Eloss

materials obtain a high PCE value, high Eg is necessary.
However, this does not conclude that high Eg leads to high PCE
value. As shown in Figure 6b, on the contrary, very few high Eg
polymers existing in the high PCE region, and we can seemost of
them are polymers with high Eloss.

3.2.2. Projection of Chemical Elements.Next, we study how
the chemical elements influence on a trend in the PCE
performance by projecting several elements, including F, N, O,
and S, to the cluster map. From the results shown in Figures 7
and 8, we find that only the presence of F has evident patterns of
the distribution on the map, while the presence of N, O, and S
elements in the polymers shows little specific distribution on the
map, indicating that those elements do not decisively influence
the PCE value. In Figure 8, we also classify the polymers based
on the number of the F atoms in the polymer chain and find that
the distribution of the polymers that contain 1 to 2 F atoms
aligns well with the high-PCE region, but the polymers with
none or more than 2 F atoms do not show this pattern. Given
this insight from theML results, among the total of 253 low PCE
materials, on the basis of Figure 8b, only 14 of them have 1 or 2
fluorine atoms attached in the monomers. We did some further
data analyses and found that 21% of materials in our data set
contain F atoms, but 44% of high-PCEmaterials have F atoms in
their backbone structure, and among them more than 90% have
1 or 2 F atoms, which constitute 40% of high PCE materials.
The importance of the F functional group in a donor material

is believed to be related to its electron-withdrawing nature.54

Introduction of fluorine into the polymer backbones can
simultaneously downshift HOMO and LUMO levels without

Figure 7. Presence of atoms for the following elements: N, O, S. PCE boundaries are shown on the cluster maps in red and blue lines.

Figure 8. Information projected cluster map of (a) the number of F atoms contained in the monomers of the donor materials and (b) the existence of 1
or 2 F atoms in the monomers of the donor materials. PCE boundaries are shown on the cluster maps in red and blue lines.
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causing strong steric hindrance of the resulting molecules,54

thereby increasing Voc. Enhancement of the inter/intra-
molecular interactions and localization of the LUMO density
on the structure are known to increase the crystallinity,
facilitating charge transfer and transport in fluorinated
molecules.54−57 Even though our data science approach does
not give an explanation why polymers with 1 or 2 F atoms show
better OPV properties, we statistically demonstrate that a
majority of polymers containing 1 or 2 F atoms in the monomers
have high PCE values when used in fullerene acceptor devices,
which can provide some insight for researchers into engineering
better OPV materials.
In the original data set, there are several pairs of comparisons

that show the incorporation of fluorine can increase the
performance: PTBF058 and PTBF158 (increase the PCE from
2.7% to 6.2%), PBT-0F59 and PBT-3F59 (increase the PCE from
4.5% to 8.6%), and PBnDT-HTAZ60 and PBnDT-FTAZ60

(increase the PCE from 4.36% to 7.1%). However, it is not a
universal rule that the addition of fluorine will increase the
performance. The addition of fluorine could cause the change of
other conditions, thus leading to the decrease of performance.61

3.2.3. Projection of Number of Aromatic Rings. General
existence of S shown in Figure 7 suggests the existence of
thiophene rings inside of the polymers. Therefore, we project
some geometrical information on the monomers on the cluster
map in search for more patterns for high PCE polymers. Figure 9
presents the projection of number of chains, aromatic rings
(total, five-membered and six-membered), and the ratio
between the number of aromatic rings and that of side chains.

The total aromatic rings include all kinds of aromatic ring
structures, and five-membered or six-membered aromatic rings
in the data set are mostly thiophene and benzene rings.
It has been suggested that the addition of thiophene rings can

improve the fill factor and morphology while designing donor−
acceptor copolymers.54 The prior research shows that the
number of benzenes has a relationship with the performance of
OPV materials.62 This is in fact shown in Figure 9a, where we
find that most of high-PCE materials have 6−9 aromatics rings
within their backbone structures. We therefore projected five-
membered rings (usually thiophene rings) to the cluster map
and then discovered that most of the polymers investigated had
3−7 thiophene rings in their monomer structures. This is clearly
shown in Figure 9c. Even though we did not observe a
correlation between the number of aromatic rings and high PCE
values, we did expose the trend in current research in this field to
focus on polymers containing 3−7 thiophene rings in their
monomer structures.
The increase of aromatic rings generally leads to a lower

solubility and worse BHJ network, which can be facilitated by
increasing the number of side alkyl chains. The fraction of
naRing over the nChain represented as naRing/nChain in
percent was projected in the cluster map in Figure 9b. The
results of that projection, however, show little or no
correspondence with the PCE value distribution, suggesting
that the scaling law is not preserved. Namely, the high-
performance polymers with many aromatic rings do not require
many alkyl chains to ensure good solubility, which is a
prerequisite for a strong stacking effect and high hole mobility.

Figure 9. Information projected cluster map of (a) total number of all aromatic rings (naRing), (b) the ratio between naRing and nChain (naRing/
nChain), (c) the number of five-membered aromatic rings (n5aRing), and (d) the number of six-membered aromatic rings (n6aRing) on the cluster
map. PCE boundaries are shown on maps in red line.
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Thus, the nonlinear effect of alkyl chains (branched and linear)
and backbone aromatics on the solubility and crystallinity of
polymers should be clarified in due course.
3.2.4. Projection of Chain Length. For materials that share

the same backbone structure, the optimal alkyl chain structure
would be a combination of both branched and linear side alkyl
chains that provide improved morphology of the donor−
acceptor mix, thereby leading to better photophysical proper-
ties.63−66 Even though it is not meaningful to compare the
number and length of side chains (linear or branched) across
materials with different backbone structures, we are getting
insight into the type of polymers researchers tend to study.
Besides the number of alkyl side chains, the length of each

chain can also be extracted from canonicalized SMILES. We
designed a function to extract the number and length of
backbone and side chains from SMILES by recognizing the
consecutively connected carbon atoms, including their numbers
and lengths.We regardmore than 3 carbon atoms as a side chain,
and a side chain with additional attached chains will be
considered as a branch.
The generated result is the combination of two arrays, such as

[0,2,2][8,7,7]; the number of elements in each array represents
the number of chains, and each value in the list represents the
length of each chain. For example, [0,2,2][8,7,7] should be
interpreted as this monomer contains 3 chains, the first one is an
8-atom long straight chain, and the second and the third one are
both branched, each with a short side chain of 2 atoms and a long
backbone of 7 atoms. This SMILES parsing algorithm is also
included in the GitHub repo.
With some simple data processing, we can visualize the

distribution of the number of branches and length of chains on
the cluster map by projecting them to the cluster map, as shown
in Figure 10. By visually comparing Figure 10a,b, we may
conclude that most of the polymers studied have branched side
chains, whereas there is no obvious preference with respect to
the existence of linear side chains in the materials being studied.
By projecting the number of the side chains to the cluster map
(Figure 10c), we found that most materials have 2−4 side chains
attached to the backbone structure in their monomers. Even
though we cannot find a pattern for the exact number or length
of side chains on simple visualizations, at least we discovered
that the majority of researchers who studied the fullerene OPV
system reported polymers with 2−4 side chains containing at
least one branched side chain. To further study the impact of

length of side chains, specific studies should be done for each
type of backbone with varying side chains lengths.
We also studied the average number of heavy atoms on each

side chain’s impact to the properties, as shown in Figure 11.
Most of high-PCE materials have around 7−12 non-hydrogen
atoms on each side chain.

4. CONCLUSION
We demonstrated that SOM in combination with molecular
descriptor generation techniques can be utilized to study the
correlation between the structural information on the polymer
materials and the performance of the polymer materials
effectively and efficiently. In our case study, by visually
comparing the PCE cluster maps and projected information,
including other properties, chemical information, and structural
information, we discovered that for fullerene acceptor OPV
systems:

1. The donor polymers with 1 or 2 fluorine atoms in their
monomer structures tend to have higher PCE values;
more than 90% of polymers with 1 or 2 fluorine atoms
have PCE values higher than 6.3%. Polymers containing
none or more than 2 fluorine atoms do not exhibit the
same pattern of having high PCE values.

2. Molecular weight of the donor polymers does not play a
dominant role in influencing the PCE performance when
Mw is compared across all polymers with different

Figure 10. Information projected cluster map of (a) the number of branched chains, (b) the number of linear chains, and (c) the number of side chains
in the monomer (nChain). PCE boundaries are shown on maps in red lines.

Figure 11. Information projected cluster map of average number of
non-hydrogen atoms on each side chain in the monomer.
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structures, different chemical components, and different
geometries.

3. Most systems that have low photon energy loss also have
high PCE values. For high photon energy loss polymers,
only the one with wide bandgap can achieve high PCE.

4. Most donor polymers that are currently under study by
materials researchers have monomer structures contain-
ing branched side chain, and 2−4 side chains. Each side
chain, on average, has 7−12 non-hydrogen atoms on it.

Even though these results were achieved purely from a
statistical approach using data science methods, they are
consistent with physical approach research results. Therefore,
we can conclude that our proposed data science workflow, or
pipeline, can be successfully utilized to extract useful
information even from data sets containing data coming from
a variety of sources across different research laboratories.
Although our case study focuses on the fullerene acceptor

system, the proposed study workflow we introduced is generic
and can be utilized to study other systems, such as nonfullerene
small molecule acceptor organic solar cells systems, or other
research topics related to polymer materials. As the amount of
data available for polymer materials increases, such data
processing pipelines as the one we proposed here will become
ever more relevant and will help guide researchers in designing
materials presenting the characteristics they desire.
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